首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The possibility to use 4-(2-pyridylazo)resorcinol (PAR) and 1-(2-pyridylazo)-2-naphthol (PAN) for manganese(II) concentrating by the micellar extraction at cloud point (CP) temperature and subsequent atomic absorption spectrometry (AAS) determination was investigated. Under the optimum conditions, preconcentration of 100 ml of water sample in the presence of 1% non-ionic surfactant (NS) OP-7, 1×10−4 M 1-(2-pyridylazo)-2-naphthol permitted the detection 5 μg l−1 manganese. The proposed method has been applied to the AAS determination of manganese in water samples after cloud point extraction.  相似文献   

2.
浊点萃取-火焰原子吸收光谱法测定水样中痕量铜的研究   总被引:19,自引:0,他引:19  
提出了浊点萃取火焰原子吸收光谱法测定痕量铜的新方法。详细探讨了溶液pH,试剂浓度等实验条件对浊点萃取及测定灵敏度的影响,在最佳下,富集50mL样品溶液,用火焰原子吸收光谱法测定,铜的检测限为0.35μg/L,铜的富集倍率为71倍。方法用于自来水、河水及海水中痕量铜的测定。  相似文献   

3.
Determination of estrogens in water by HPLC-UV using cloud point extraction   总被引:1,自引:0,他引:1  
Wang L  Cai YQ  He B  Yuan CG  Shen DZ  Shao J  Jiang GB 《Talanta》2006,70(1):47-51
A method based on cloud point extraction was developed to determine four kinds of estrogens: estriol (E3), estradiol (E2), estrone (E1), and progesterone (P) in water by high performance liquid chromatography separation and ultraviolet detection (HPLC-UV). The non-ionic surfactant Triton X-114 was chosen as extractant solvent. The parameters affecting extraction efficiency, such as concentrations of Triton X-114 and Na2SO4, equilibration temperature, equilibration time and centrifugation time were evaluated and optimized. Under the optimum conditions, preconcentration factors of 99 for E3, 73 for E2, 152 for E1 and 86 for P were obtained for 10 mL water sample. The detection of limitation was 0.23 ng mL−1 for E3, 0.32 ng mL−1 for E2, 0.25 ng mL−1 for E1 and 5.0 ng mL−1 for P. The proposed method was successfully applied to the determination of trace amount of estrogens in wastewater treatment plant (WWTP) effluent water and exposure water with 10 ng mL−1 E2 for toxicological study in our lab. For the case of WWTP effluent water samples, no estrogen was found. The accuracy of the proposed method was tested by recovery measurements of spiked samples and good recoveries of 81.2-99.5% were obtained.  相似文献   

4.
The cloud point of nonionic surfactant polyoxyethylene (23) lauryl ether (Brij-35) was determined in the presence of various inorganic electrolytes. The measurements of cloud point (CP) were carried out with UV-vis spectrophotometer instead of visual observation. CP of Brij-35 could not be measured directly because its CP is more than 100 °C. Therefore, CP values of Brij-35 were lowered by the addition of electrolytes. In this study, NaF, NaCl, NaBr, KNO3, K2CO3, K3PO4, Li2SO4, Na2SO4, K2SO4, (NH4)2SO4, CuSO4, ZnSO4, CoSO4 were used as electrolytes. Linear lines which were drawn with CP values were extrapolated to zero electrolyte concentration. The real CP value of Brij-35 which is merely listed as >100 °C in the literature was found as 118.5 ± 0.5 °C for all samples. Furthermore, the effects of the nature of the cation and the anion and the valencies of the cations on CP were reported and the rate of decrease in CP with concentration is discussed.  相似文献   

5.
In this study, flow injection-cloud point extraction (FI-CPE) of iron and copper in food samples by flame atomic absorption spectrometric determination was described. Triton X-114 non-ionic surfactant and Eriochrome Cyanine R (ECR) have been used as an extraction medium and a chelating agent, respectively. The amounts of Triton X-114, ECR and the pH value necessary for extraction were carefully optimized. In addition, several parameters of the FI-CPE system, including sample loading rate, column dimension, type of packing material, eluent flow rate were investigated and analytical characteristics of the method were evaluated. Under optimum conditions, detection limits of 0.33 ng/mL and 0.57 ng/mL and quantification limits of 1.1 ng/mL and 1.9 ng/mL for iron and copper along with enrichment factors of 141 and 99 were obtained, respectively. The calibration was linear over the range 1.5-25 ng/mL and 1.0-35 ng/mL for iron and copper, respectively. The proposed CPE technique has been successfully applied for the determination of iron and copper ions in certified reference materials (NCS DC 73349—bush, branches and leaves; and TM-23.2—fortified water), water samples (mineral and sea water) and food samples (vegetables, bread and hazelnut) with high efficiency.  相似文献   

6.
This study investigates the effects of gemini and conventional cationic surfactants on the cloud point (CP) of the non-ionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The thermodynamic parameters of these mixtures were calculated at different cationic surfactant concentrations. The gemini surfactants of the alkanediyl-α-ω-bis (alkyldimethylammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as “m-2-m” (m = 10, 12, and 16) and, on the other hand, with –C16 alkyl groups and different spacers containing s carbon atoms, referred to as “16-s-16” (s = 6 and 10) were synthesized, purified and characterized. Additions of the cationic surfactants to the TX-100 solution increased the cloud point temperature of the TX-100 solution. It was accepted that the solubility of non-ionic surfactant containing polyoxyethylene (POE) hydrophilic chain was a maximum at the cloud point so that the thermodynamic parameters were calculated at this temperature. The results showed that the standard Gibbs free energy , the enthalpy and the entropy of the clouding phenomenon were found positive in all cases. The standard free energy increased with increasing hydrophobic alkyl chain for both gemini and conventional cationic surfactants; however, it decreased with increasing surfactant concentration.  相似文献   

7.
建立了浊点萃取-分光光度法测定痕量NO2-根的方法.以对氨基苯磺酸和α-萘胺为络合剂,非离子型表面活性剂TritonX-100为萃取剂,富集、分离水样中痕量NO2-,采用可见吸收光谱法进行检测.研究了溶液的酸度、试剂用量、平衡时间、平衡温度、干扰离子对浊点萃取效果的影响,并得到最佳实验条件:5%的TritonX-100用量2.0mL、平衡温度85℃、平衡时间10min、对氨基苯磺酸和α-萘胺均为0.3mL、0.1mol/LH2SO4溶液0.5mL.在最佳实验条件下,对氨基苯磺酸、α-萘胺和NO2-生成的络合物被萃取到TritonX-100表面活性剂相并与水相分开.该方法适用于环境水样中痕量NO2-的测定.  相似文献   

8.
Filik H  Giray D  Ceylan B  Apak R 《Talanta》2011,85(4):1818-1824
A novel fiber optic spectrophotometric method for nitrite determination in different samples is suggested, based on the reaction of nitrite with Safranin O in acidic medium to form a diazo-safranin, which is subsequently coupled with pyrogallol in alkaline medium to form a highly stable, red azo dye, followed by cloud point extraction (CPE) using a mixed micelle of a nonionic surfactant, Triton X-114, with an anionic surfactant, sodium dodecyl sulphate (SDS). The reaction and extraction conditions (e.g., acidity for diazotization and alkalinity for pyrogallol coupling, and other reagent concentrations, time, and tolerance to other ions) were optimized. Linearity was obeyed in a concentration range up to 230 μg L−1, and the detection limit of the method is 0.5 μg L−1 of nitrite ion. The molar absorptivity for nitrite of the Safranin-diazonium salt (?610 nm = 4 × 103 L mol−1 cm−1) existing in literature was greatly enhanced by pyrogallol coupling and CPE enrichment (?592 nm = 1.39 × 105 L mol−1 cm−1). The method was applied to the determination of nitrite in tap water, lake water and milk samples with an optimal preconcentration factor of 20.  相似文献   

9.
A novel and sensitive cloud point extraction procedure for the determination of trace amounts of malachite green by spectrophotometry was developed. Malachite green was extracted at pH 2.5 mediated by micelles of nonionic surfactant Triton X-100. The extracted surfactant-rich phase was diluted with ethanol and its absorbance was measured at 630 nm. The effect of different variables such as pH, Triton X-100 concentration, cloud point temperature and time and diverse ions was investigated and optimum conditions were established. The calibration graph was linear in the range of 4-500 ng mL−1 of malachite green in the initial solution with r = 0.9996 (n = 10). Detection limit based on three times the standard deviation of the blank (3Sb) was 1.2 ng mL−1 and the relative standard deviation (R.S.D.) for 20 and 300 ng mL−1 of malachite green was 1.48 and 1.13% (n = 8), respectively. The method was applied to the determination of malachite green in different fish farming and river water samples.  相似文献   

10.
A new approach, employing cloud point extraction (CPE) in combination with thermal lens spectrometry (TLS), has been developed for the determination of cobalt. The CPE and TLS methods have good matching conditions for combination because TLS is suitable for low volume samples obtained after CPE and for organic solvents, which are used for dissolving the remaining analyte phase.1-(2-Pyridylazo)-2-naphthol (PAN) was used as a complexing agent and octylphenoxypolyethoxyethanol (Triton X-114) was added as a surfactant; then the pH of solution was adjusted. After phase separation at 50 °C based on the cloud point extraction of the mixture, the surfactant-rich phase was dried and the remaining phase was dissolved using 20 μL of carbon tetrachloride. The obtained solution was introduced into the quartz micro cell and the analyte was determined by thermal lens spectrometry. The He-Ne laser (632.8 nm) was used as both the probe and the excite source.Under optimum conditions, the analytical curve was linear for the concentration range of 0.2-40 ng mL−1 and the detection limit was 0.03 ng mL−1. The enhancement factor of 470 was achieved for a 10 mL sample. Relative standard deviations were lower than 5%.The method was successfully applied to the extraction and determination of cobalt in tap, river and sea water.  相似文献   

11.
Candir S  Narin I  Soylak M 《Talanta》2008,77(1):289-293
A cloud point extraction (CPE) procedure has been developed for the determination trace amounts of Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II) ions by using flame atomic absorption spectrometry. The proposed cloud point extraction method was based on cloud point extraction of analyte metal ions without ligand using Tween 80 as surfactant. The surfactant-rich phase was dissolved with 1.0 mL 1.0 mol L−1 HNO3 in methanol to decrease the viscosity. The analytical parameters were investigated such as pH, surfactant concentration, incubation temperature, and sample volume, etc. Accuracy of method was checked analysis by reference material and spiked samples. Developed method was applied to several matrices such as water, food and pharmaceutical samples. The detection limits of proposed method were calculated 2.8, 7.2, 0.4, 1.1, 0.8 and 1.7 μg L−1 for Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II), respectively.  相似文献   

12.
Persistent organic pollutants (POPs) are recognized as a class of poisonous compounds which pose risks of causing adverse effects to human health and the environment. Thus, it is very important to detect POPs in environmental and biological samples. The identification and determination of very low levels of POPs in complex matrices is extremely difficult. Recently a promising environmentally benign extraction and preconcentration methodology based on cloud point extraction (CPE) has emerged as an efficient sample pretreatment technique for the determination of trace/ultra-trace POPs in complex matrices. The purpose of this paper is to review the past and latest use of CPE for preconcentrating POPs and its coupling to different contemporary instrumental methods of analysis. First, the comparison of various extraction techniques for POPs is described. Next, the general concept, influence factors and other methods associated with CPE technique are outlined and described. Last, the hyphenations of CPE to various instrumental methods for their determination are summarized and discussed.  相似文献   

13.
Chen J  Xiao S  Wu X  Fang K  Liu W 《Talanta》2005,67(5):992-996
Cloud point extraction (CPE) has been used for the pre-concentration of lead, after the formation of a complex with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP), and later analysis by graphite furnace atomic absorption spectrometry (GFAAS) using octylphenoxypolyethoxyethanol (TritonX-114) as surfactant. The chemical variables affecting the separation phase were optimized. Separation of the two phases was accomplished by centrifugation for 15 min at 4000 rpm. Under the optimum conditions i.e., pH 8.0, cloud point temperature 40 °C, [5-Br-PADAP] = 2.5 × 10−5 mol l−1, [Triton X-114] = 0.05%, added methanol volume = 0.15 ml, pre-concentration of only 10 ml sample permitted an enhancement factor of 50-fold. The lower limit of detection (LOD) obtained under the optimal conditions was 0.08 μg l−1. The precision for 10 replicate determinations at 5 μg l−1 Pb was 2.8% relative standard deviation (R.S.D.). The calibration graph using the pre-concentration system for lead was linear with a correlation coefficient of 0.9984 at levels near the detection limits up to at least 30 μg l−1. The method was successfully applied to the determination of lead in water samples.  相似文献   

14.
Cloud point extraction (CPE) has been used for the simultaneous pre-concentration of cadmium, copper, lead and zinc after the formation of a complex with 1-(2-thiazolylazo)-2-naphthol (TAN), and later analysis by flame atomic absorption spectrometry (FAAS) using octylphenoxypolyethoxyethanol (Triton X-114) as surfactant. The chemical variables affecting the separation phase and the viscosity affecting the detection process were optimized. At pH 8.6, pre-concentration of only 50 ml of sample in the presence of 0.05% Triton X-114 and 2×10−5 mol l−1 TAN permitted the detection of 0.099, 0.27, 1.1 and 0.095 ng ml−1 cadmium, copper, lead and zinc, respectively. The enhancement factors were 57.7, 64.3, 55.6 and 63.7 for cadmium, copper, lead and zinc, respectively. The proposed method has been applied to the determination of cadmium, copper, lead and zinc in water samples and a standard reference material (SRM).  相似文献   

15.
Novel strategies are proposed to circumvent the main drawbacks of flow-based cloud point extraction (CPE). The surfactant-rich phase (SRP) was directly retained into the optical path of the spectrophotometric cell, thus avoiding its dilution previously to the measurement and yielding higher sensitivity. Solenoid micro-pumps were exploited to improve mixing by the pulsed flow and also to modulate the flow-rate for retention and removal of the SRP, thus avoiding the elution step, often carried out with organic solvents. The heat released and the increase of the salt concentration provided by an on-line neutralization reaction were exploited to induce the cloud point without an external heating device. These innovations were demonstrated by the spectrophotometric determination of iron, yielding a linear response from 10 to 200 μg L−1 with a coefficient of variation of 2.3% (n = 7). Detection limit and sampling rate were estimated at 5 μg L−1 (95% confidence level) and 26 samples per hour, respectively. The enrichment factor was 8.9 and the procedure consumed only 6 μg of TAN and 390 μg of Triton X-114 per determination. At the 95% confidence level, the results obtained for freshwater samples agreed with the reference procedure and those obtained for digests of bovine muscle, rice flour, brown bread and tort lobster agreed with the certified reference values. The proposed procedure thus shows advantages in relation to previously proposed approaches for flow-based CPE, being a fast and environmental friendly alternative for on-line separation and pre-concentration.  相似文献   

16.
An efficient and easy sample pretreatment methodology was proposed for the detection of photoinitiator 4‐methylbenzophenone from milk before high‐performance liquid chromatography. Appropriate conditions for demulsification were studied. The parameters affecting cloud point extraction, such as concentration of Tween‐20, electrolyte salt, equilibration temperature, and time, have been investigated. When the spiked level was 200–1000 μg/kg, the average addition standard recovery was 99.14–105.98% with the optimum cloud point extraction conditions (concentration of Tween‐20, 138 g/L; mass of anhydrous sodium sulfate, 0.75 g; equilibration temperature, 65°C; equilibration time, 30 min). To decrease the detection limits, further work about the organic solvent, shaking time, and ultrasonic parameters was carried. When the spiked level was 10–100 μg/kg, the average addition standard recovery was 70.40–106.91% with the optimum cloud point extraction and enrichment conditions (optimum cloud point extraction conditions; volume of cyclohexane, 30 mL; shaking time, 20 min; time of ultrasonic, 20 min; temperature of ultrasonic bath, 45°C).  相似文献   

17.
Cloud point extraction (CPE) was used to extract and separate lanthanum(III) and gadolinium(III) nitrate from an aqueous solution. The methodology used is based on the formation of lanthanide(III)-8-hydroxyquinoline (8-HQ) complexes soluble in a micellar phase of non-ionic surfactant. The lanthanide(III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud point temperature (CPT). The structure of the non-ionic surfactant, and the chelating agent-metal molar ratio are identified as factors determining the extraction efficiency and selectivity. In an aqueous solution containing equimolar concentrations of La(III) and Gd(III), extraction efficiency for Gd(III) can reach 96% with a Gd(III)/La(III) selectivity higher than 30 using Triton X-114. Under those conditions, a Gd(III) decontamination factor of 50 is obtained.  相似文献   

18.
浊点萃取电热原子吸收光谱法测定水中痕量铊   总被引:2,自引:0,他引:2  
采用吡咯烷基二硫代氨基甲酸铵(APDC)为螯合剂,Triton X-114作为表面活性剂,建立了浊点萃取预富集电热原子吸收光谱法测定水中痕量铊的方法。在优化的实验条件下,方法的检出限可达0.07μg/L,相对标准偏差为3.6%(4μg/L,n=7),加标回收率为93%~106%,富集倍率为31。该方法成功应用于自来水和河水中痕量铊的测定。  相似文献   

19.
The possibility was investigated of using 2-mercaptobenzothiazole (MBT) for Ag(I) concentration by micellar extraction at cloud point (CP) temperature and subsequent determination by flame atomic absorption spectrometry (FAAS). The method is based on the complexation of Ag(I) with 2-mercaptobenzothiazole (MBT) in the presence of non-ionic micelles of Triton X-114. The effect of experimental conditions such as pH, concentration of chelating agent and surfactant, equilibration temperature and time on cloud point extraction was studied. Under the optimum conditions, the preconcentration of 10 mL of water sample in the presence of 0.1% Triton X-114 and 2 × 10−4 mol L−1 2-mercaptobenzothiazole permitted the detection of 2.2 ng mL−1 silver. The calibration graph was linear in the range of 10–200 ng mL−1, and the recovery of more than 99% was achieved. The proposed method was used in FAAS determination of Ag(I) in water samples.  相似文献   

20.
The polyoxyethylene chain of non-ionic surfactant Triton X-100 [4-(1,1,3,3-tetramethylbutyl) phenyl polyethylene glycol,TX-100] was degraded by permanganate in the presence of HClO4. The oxidative degradation rate and cloud point have been obtained as a function of [surfactant], [permanganate], [HClO4], and temperature. Dependence of the reaction rate on adding inorganic salts (Na4P2O7, NaF and MnCl2) was also examined. The oxidation rate increased with increase in [TX-100] and [H+]. The higher order kinetics with respect to [TX-100] at lower [H+] shifted to lower order at higher [H+]. The cloud point of TX-100 (67°C) shifted to lower temperature (23±0.5°C) after oxidative degradation of the polyoxyethylene chain. Evidence of complex formation between TX-100 and MnO 4 was obtained spectrophotometrically. Presence of the primary alcoholic (–OH) group in the TX-100 skeleton is responsible for the degradation of oxyethylene chain. Both monomeric and aggregated TX-100 molecules are oxidized by permanganate. A catalytic oxidation mechanism is proposed on the basis of the experimental findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号