首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Huang MR  Rao XW  Li XG  Ding YB 《Talanta》2011,85(3):1575-1584
A novel membrane electrode for Pb(II) ion detection based on semi-conducting poly(m-phenylenediamine) microparticles as a unique solid ionophore was fabricated. The electrode exhibited significantly enhanced response towards Pb(II) over the concentration range from 3.16 × 10−6 to 0.0316 M at pH 3.0-5.0 with a low detection limit of 6.31 × 10−7 M, a high sensitivity displaying a near-Nernstian slope of 29.8 mV decade−1 for Pb(II). The electrode showed a long lifetime of 5 months and a short response time of 14 s. A systematical investigation on the effect of anion excluder and various foreign ions on the selectivity of the electrode by a fixed interference method suggests that all other metal ions hardly ever interfere with the determination of Pb(II) except high concentration Hg(II). The electrode was successfully used as an indicator electrode in the potentiometric titration of Pb(II) with EDTA. Furthermore, the electrode has been used to satisfactorily analyze four types of real-world samples like spiked human urine, spiked tap water, and river water containing interfering ions like Na(I), Ca(II), Mg(II), Zn(II), Pd(II), Fe(III), K(I), Cu(II) and Hg(II) up to 8.04 × 10−4 M, demonstrating fast response, high selectivity, good recovery (96.6-121.4%), good repeatability (RSD 0.31-6.45%), and small relative error (5.0%).  相似文献   

2.
Xin-Gui Li  Xiao-Li Ma 《Talanta》2009,78(2):498-140
A new polyvinylchloride membrane electrode was facilely prepared by using polyaminoanthraquinone (PAAQ) microparticles with an intrinsically electrical conductivity as a lead(II) ionophore. It is found that the electrode performance will significantly be improved with adding 1 wt% PAAQ microparticles and decreasing the membrane thickness. A 90 μm-thick membrane electrode consisting of PAAQ(salt):polyvinyl chloride:dioctylphthalate:sodium tetraphenylborate of 1:33:66:1 (wt) but without any traditional lead(II) ionophore achieved the optimal performance and exhibited a good Nernstian response for Pb(II) ions over a wide concentration range from 2.5 × 10−6 to 0.1 M with a slope of 28.9 mV/decade and a detection limit down to 776 nM. A reasonably short response time of 12 s was revealed together with a long lifetime over a period of around 4 months in a wide pH range between 2.8 and 5.2. A fixed interference method indicated that the electrode has an excellent selectivity for lead(II) ion over alkali, alkaline earth and other heavy metal ions. The proposed electrode has been also found to be a powerful indicator electrode for potentiometric titration of Pb(II) ions with EDTA. The electrode can be used to accurately monitor the Pb(II) pollution in environmental waters.  相似文献   

3.
We report about the use of carbon paste electrode modified with kaolinite for analytical detection of trace lead(II) in domestic water by differential pulse voltammetry. Kaolinite clay was modified with tripolyphosphate (TPP) by impregnation method. The results show that TPP in kaolinite clay plays an important role in the accumulation process of Pb(II) on the modified electrode surface. The electroanalytical procedure for determination of Pb(II) comprised two steps: chemical accumulation of the analyte under open-circuit conditions, followed by electrochemical detection of the pre-concentrated species using differential pulse voltammetry. The analytical performance of this system has been explored by studying the effects of preconcentration time, carbon paste composition, pH, supporting electrolyte concentration, as well as interferences due to other ions. The calculated detection limit based on the variability of a blank solution (3sb criterion) for 10 measurements was 8.4 × 10−8 mol L−1, and the sensitivity determined from the slope of the calibration graph was 0.910 mol L−1. The reproducibility (RSD) for five replicate measurements at 1.0 mg L−1 lead level was 1.6%. The results indicate that this electrode is sensitive and effective for the determination of Pb2+.  相似文献   

4.
Kilian K  Pyrzyńska K 《Talanta》2003,60(4):669-678
The reaction of 5,10,15,20-tetrakis(4-carboxylphenyl)porphyrin (TCPP) with Cd(II), Pb(II), Hg(II) and Zn(II) was studied spectrophotometrically and kinetics, equilibrium constants as well as photodecomposition of complexes were determined. It was verified that these metal ions with large radius accelerate the incorporation reaction of zinc into TCPP. On the basis of the mechanism and kinetics of this reaction, a sensitive method for the spectrophotometric determination of trace amounts of Zn(II) has been developed. The molar absorptivity of examined Zn-TCPP complex and Sandell's sensitivity at 423 nm were 3.5×105 M−1 cm−1 and 18.3 ng cm−2. The detection limit for the recommended procedure was 1.4×10−9 M (0.9 ng ml−1) and precision in range 20-100 ng ml−1 not exceeds 2.7% RSD. The proposed method applied for zinc determination in natural waters and nutritional supplement was compared with AAS results and declared value.  相似文献   

5.
We report for the first time the synthesis of bismuth-modified (3-mercaptopropyl) trimethoxysilane (MPTMS) and its application for the determination of lead and cadmium by anodic stripping voltammetry. Xerogels made from bismuth-modified MPTMS and mixtures of it with tetraethoxysilane, under basic conditions (NH3·H2O), were characterized with scanning electron microscopy, energy dispersive spectroscopy, infrared spectroscopy and electrochemical methods. Bismuth-modified xerogels were mixed with 1.5% (v/v) Nafion in ethanol and applied on glassy carbon electrodes. During the electrolytic reductive deposition step, the bismuth compound on the electrode surface was reduced to metallic bismuth. The target metal cations were simultaneously reduced to the respective metals and were preconcentrated on the electrode surface by forming an alloy with bismuth. Then, an anodic voltammetric scan was applied in which the metals were oxidized and stripped back into the solution; the voltammogram was recorded and the stripping peak heights were related to the concentration of Cd(II) and Pb(II) ions in the sample. Various key parameters were investigated in detail and optimized. The effect of potential interferences was also examined. Under optimum conditions and for preconcentration period of 4 min, the 3σ limit of detection was 1.3 μg L−1 for Pb(II) and 0.37 μg L−1 for Cd(II), while the reproducibility of the method was 4.2% for lead (n = 5, 10.36 μg L−1 Pb(II)) and 3.9% for cadmium (n = 5, 5.62 μg L−1 Cd(II)). Finally, the sensors were applied to the determination of Cd(II) and Pb(II) ions in water samples.  相似文献   

6.
A potentiometric sensor for lead(II) ions based on the use of 1,4,8,11‐tetrathiacyclotetradecane (TTCTD) as a neutral ionophore and potassium tetrakis‐(p‐chlorophenyl)borate as a lipophilic additive in plasticized PVC membranes is developed. The sensor exhibits linear potentiometric response towards lead(II) ions over the concentration range of 1.0×10?5–1.0×10?2 mol L?1 with a Nernstian slope of 29.9 mV decade?1 and a lower limit of detection of 2.2×10?6 mol L?1 Pb(II) ions over the pH range of 3–6.5. Sensor membrane without a lipophilic additive displays poor response. The sensor shows high selectivity for Pb(II) over a wide variety of alkali, alkaline earth and transition metal ions. The sensor shows long life span, high reproducibility, fast response and long term stability. Validation of the method by measuring the lower limit of detection, lower limit of linear range, accuracy, precision and sensitivity reveals good performance characteristics of the proposed sensor. The developed sensor is successfully applied to direct determination of lead(II) in real samples. The sensor is also used as an indicator electrode for the potentiometric titration of Pb(II) with EDTA and potassium chromate. The results obtained agree fairly well with data obtained by AAS.  相似文献   

7.
Zaijun L  Yuling Y  Jian T  Jiaomai P 《Talanta》2003,60(1):123-130
A highly sensitive and selective spectrophotometric method for determination of trace lead in water after pre-concentration using mercaptosephadex (MS-50) has been developed, the method based on the color reaction of lead(II) with dibromohydroxylphenylporphyrin. Under optimal condition, lead(II) reacts with the reagent to form a 1:2 yellow complex in presence of TritonX-100, which has a maximum absorption peak at 479 nm. The color reaction can complete rapidly and remain stable for 24 h in room temperature. The molar absorption coefficient of the lead complex, the limit of quantification, the limit of detection and relative standard deviations were found to be 2.35×105 l mol−1 cm−1, 4.3, 1.4 ng ml−1 and 1.0%, respectively. The absorbance of the lead complex at 479 nm is linear up to 0.48 μg ml−1 of lead(II). The effect of various co-existing ions in water were examined seriously. No interference was observed. Moreover, a simple pre-concentration method for trace lead in water was also studied using MS-50. It was found that trace lead in water can be adsorbed in 1.0 mol l−1 HCl and dissociated from MS-50 with 4.0 mol l−1 HCl quantitatively, that improves the selectivity and the sensitivity of method (its detection limit (3 s) changed into 0.2 ng ml−1 of lead) obviously. The proposed method has been applied to determine trace lead in water samples with satisfactory results.  相似文献   

8.
M. Ghiaci  R.J. Kalbasi 《Talanta》2007,73(1):37-45
The main purpose of this study is to develop an inexpensive, simple, selective and especially highly selective modified mixed-oxide carbon paste electrode (CPE) for voltammetric determination of Pb(II). For the preliminary screening purpose, the catalyst was prepared by modification of SiO2-Al2O3 mixed-oxide and characterized by TG, CHN elemental analysis and FTIR spectroscopy. Using cyclic voltammetry the electroanalytical characteristics of the catalyst have been determined, and consequently the modified mixed-oxide carbon paste electrode was constructed and applied for determination of Pb(II). The electroanalytical procedure for determination of the Pb(II) comprises two steps: the chemical accumulation of the analyte under open-circuit conditions followed by the electrochemical detection of the preconcentrated species using differential pulse anodic stripping voltammetry. During the preconcentration step, Pb(II) was accumulated on the surface of the modifier by the formation of a complex with the nitrogen atoms of the pyridyl groups in the modifier. The peak currents increases linearly with Pb(II) concentration over the range of 2.0 × 10−9 to 5.2 × 10−5 mol L−1 (r2 = 0.9995).The detection limit (three times signal-to-noise) was found to be 1.07 × 10−9 mol L−1 Pb(II). The chemical and instrumental parameters have been optimized and the effect of the interferences has been determined. The Proposed method was used for determination of lead ion in the real samples.  相似文献   

9.
Hassan SS  Elnemma EM  Mohamed AH 《Talanta》2005,66(4):1034-1041
Two novel membrane sensors sensitive and reasonably selective for Cu2+ ions are described. These are based on the use of newly synthesized cyclic tetrapeptide derivatives as neutral ionophores and sodium tetraphenylborate (NaTPB) as an anionic excluder in plasticized PVC membranes. The sensors exhibit fast and stable near-Nernstian response over the concentration range 1.0 × 10−6 mol l−1 to 1.0 × 10−2 mol l−1 Cu2+ with a cationic slope of 30.2-25.9 mV per decade at pH 4.5-7 with a lower detection limit of 0.05-0.13 μg ml−1. Effects of plasticizers, lipophilic salts and various foreign common ions are tested. The sensors display long life-span, long term stability, high reproducibility, and short response time. Selectivity of both sensors is significantly high for Cu2+ over Fe3+, Al3+, Zn2+, Cd2+, Hg2+, Ni2+, Co2+, Mn2+, alkaline earth and alkali metal ions. The sensors are used for direct measurement of copper content in different rocks and industrial wastewater samples from electroplating factories. The results agree fairly well with data obtained using atomic absorption spectrometry.  相似文献   

10.
In this article, a study of novel screen-printed electrodes bulk-modified with five potential bismuth precursor compounds (bismuth citrate, bismuth titanate, bismuth oxide, bismuth aluminate and bismuth zirconate) is presented for the determination of Cd(II) and Pb(II) by anodic stripping voltammetry. During the electrolytic deposition step, the precursor was reduced and served as the source of bismuth. Different key parameters were investigated in detail such as the nature of the bismuth precursor compound, the precursor content in the carbon ink, the polarisation range of the sensors, the supporting electrolyte, the stripping waveform, the deposition time, the deposition potential and the long-term stability of the sensors under continuous use. Using bismuth citrate as the precursor, the limit of detection was 0.9 μg L−1 for Pb(II) and 1.1 μg L−1 for Cd(II). The reproducibility on the same sensor (expressed as % relative standard deviation, (n = 8)) was 5.4% for Pb(II) and 7.2% for Cd(II) at the 20 μg L−1 level. Finally, the sensors were applied to the determination of Cd(II) and Pb(II) in water samples.  相似文献   

11.
Potentiometric thiocyanate-selective sensors based on the use of three synthesized di-, tetra-, and hexa-imidepyridine derivatives as novel anionic neutral ionophores in plasticized poly(vinyl chloride) (PVC) membranes are described. The sensors exhibit significantly enhanced response towards thiocyanate ions over the concentration range 5×10−6 to 1.0×10−2 M with a lower detection limit of 0.3 μg ml−1 and slopes ranging from −55.6 to −58.3 mV per decade. Fast and stable response, good reproducibility, long-term stability, applicability over a wide pH range (2-8) and high selectivity for SCN ion in the presence of 18 common anions are demonstrated. The sensors are used for direct potentiometric measurements of thiocyanate ions over the concentration range 0.2-580 μg ml−1 and for monitoring sequential titration of some metal ions (e.g. Ag+, Tl+, Cu2+, Pb2+) in binary and ternary mixtures. Sequential binding of these metal ions with SCN ensures share stepwise titration curves with consecutive end point breaks at the equivalent points. Recoveries of 98.5-99.1±0.3% are obtained for metal ion concentrations of 0.06-4 mg ml−1.  相似文献   

12.
A new flow injection (FI) system for the determination of Pb(II) at trace level with a preconcentration step and spectrophotometric detection is proposed. It is based on preconcentration of lead ions on chitosan and dithizone-lead complex formation in aqueous medium (pH 9). The chemicals and FIA variables influencing the performance of the system were optimized and applied to the determination of lead in natural, well, and drinking water samples. It is a simple, highly sensitive, and low cost alternative methodology. The method provided a linear rage between 25 and 250 μg l−1, a detection limit of 5.0 ng ml−1 and a sample throughput of 15 h−1. The obtained results of spiked samples are in good agreement between the proposed method and ICP-AES.  相似文献   

13.
A new PVC membrane electrode for manganese(II) ion based on a recently synthesized Schiff base of 5-[(4-nitrophenylazo)-N-hexylamine]salicylaldimine is reported. The electrode exhibits a Nernstian response for Mn2+ ions over a wide concentration range (4.0 × 10−7 to 1.8 × 10−2 mol L−1) with a slope of 30.1 (±1.0). The limit of detection is 1.0 × 10−7 mol L−1. The electrode has a fast response time (∼10 s), a satisfactory reproducibility and relatively long life time. The proposed sensor revealed good selectivities over a wide variety of other cations include hard and soft metals. This electrode could be used in a pH range of 4.5-7.5. It was used as an indicator electrode in potentiometric titration of manganese(II) ions with EDTA solution.  相似文献   

14.
A modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and 3-(4-methoxybenzylideneamino)-2-thioxothiazolodin-4-one as a new synthesized Schiff base was constructed for the simultaneous determination of trace amounts of Hg(II) and Pb(II) by square wave anodic stripping voltammetry. The modified electrode showed an excellent selectivity and stability for Hg(II) and Pb(II) determinations and for accelerated electron transfer between the electrode and the analytes. The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as pH, deposition potential and deposition time were optimized for the purpose of determination of traces of metal ions at pH 3.0. Under optimal conditions the limits of detection, based on three times the background noise, were 9.0 × 10−4 and 6.0 × 10−4 μmol L−1 for Hg(II) and Pb(II) with a 90 s preconcentration, respectively. In addition, the modified electrode displayed a good reproducibility and selectivity, making it suitable for the simultaneous determination of Hg(II) and Pb(II) in real samples such as sea water, waste water, tobacco, marine and human teeth samples.  相似文献   

15.
Jie Mao  Qun He  Weisheng Liu 《Talanta》2010,80(5):2093-432
An “off-on” rhodamine-based fluorescence probe for the selective signaling of Fe(III) has been designed exploiting the guest-induced structure transform mechanism. This system shows a sharp Fe(III)-selective fluorescence enhancement response in 100% aqueous system under physiological pH value and possesses high selectivity against the background of environmentally and biologically relevant metal ions including Al(III), Cd(II), Fe(II), Co(II), Cu(II), Ni(II), Zn(II), Mg(II), Ba(II), Pb(II), Na(I), and K(I). Under optimum conditions, the fluorescence intensity enhancement of this system is linearly proportional to Fe(III) concentration from 6.0 × 10−8 to 7.2 × 10−6 mol L−1 with a detection limit of 1.4 × 10−8 mol L−1.  相似文献   

16.
Solid phase extraction of metal ions using carbon nanotubes   总被引:1,自引:0,他引:1  
The sorption behaviour of carbon nanotubes (CNTs) toward some divalent metal ions such as Cu(II), Co(II), Ni(II), Zn(II), Pb(II), Mn(II) and Cd(II) has been investigated systematically. The affinity order of the metal ions towards CNTs at pH in the range of 7.0-9.0 was: Cu(II) > Pb(II) > Zn(II) > Co(II) > Ni(II) > Cd(II) > Mn(II). The experimental parameters for preconcentration of copper, which exhibits the highest affinity towards carbon nanotubes, on a microcolumn packed with CNTs prior to its determination by flame atomic absorption spectrometry have been investigated. Copper can be quantitatively retained at pH 8.2 from sample volume up to 150 mL and then eluted completely with 0.1 mol L− 1 HNO3. The limit of detection limit for Cu(II) determination with FAAS detection was 2.1 μg L− 1, and the RSD was 3.5% at the 50 μg L− 1 level. Under the optimal conditions for copper enrichment also Zn(II), Pb(II) and Ni(II) could be quantitatively preconcentrated from water samples. The method was validated using a certified reference materials BCR-610 and SRM 1640.  相似文献   

17.
A new time-based flow injection on-line solid phase extraction method for chromium(VI) and lead determination using flame atomic absorption spectrometry was developed. The use of hydrophobic poly-chlorotrifluoroethylene (PCTFE)-beads as absorbent in on-line preconcentration system was evaluated. Effective formation of ammonium pyrrolidine dithiocarbamate complexes and subsequently retention in PCTFE packed column, was achieved in pH range 1.0-1.6 and 1.5-3.2 for Cr(VI) and Pb(II) ions, respectively. The sorbed analyte was efficiently eluted with isobutyl-methyl-ketone for on-line FAAS determination. The proposed packing material exhibited excellent chemical and mechanical resistance, fast kinetics for adsorption of Cr(VI) and Pb(II) permitting the use of high sample flow rates at least up to 15 mL min−1 without loss of retention efficiency. For a preconcentration time of 90 s, the sample frequency was 30 h−1, the enhancement factor was 94 and 220, the detection limit was 0.4 and 1.2 μg L−1, while the precision (R.S.D.) was 1.8% (at 5 μg L−1) and 2.1% (at 30 μg L−1) for chromium(VI) and lead, respectively. The applicability and the accuracy of the developed method were estimated by the analysis spiked water samples and certified reference material NIST-CRM 1643d (Trace elements in water) and NIST-SRM 2109 (chromium(VI) speciation in water).  相似文献   

18.
Cobalt(II) phthalocyanine [Co(II)Pc] is used as both an ionophore and chromogen for batch and flow injection potentiometric and spectrophotometric determination of anionic surfactants (SDS), respectively. The potentiometric technique involves preparation of a polymeric membrane sensor by dispersing [Co(II)Pc] in a plasticized PVC membrane. Under batch mode of operation, the sensor displays a near-Nernstian slope of −56.5 mV decade−1, wide response linear range of 7.8 × 10−4 to 8.0 × 10−7 mol L−1, lower detection limit of 2.5 × 10−7 mol L−1 and exhibits high selectivity for anionic surfactants in the presence of many common ions. Under hydrodynamic mode of operation (FIA), the slope of the calibration plot, limit of detection, and working linear range are −51.1 mV decade−1, 5.6 × 10−7 and 1.0 × 10−3 to 1.0 × 10−6 mol L−1, respectively. The spectrophotometric method is based on the use of [Co(II)Pc] solution in dimethylsulfoxide (DMSO) as a chromogenic reagent. The maximum absorption of the reagent at 658 nm linearly decreases with the increase of anionic surfactant over the concentration range 2-30 μg mL−1. The lower limit of detection is 1 μg mL−1 and high concentrations of many interfering ions are tolerated. Flow injection spectrophotometric measurements are carried out by injection of the surfactant test solution in a stream of the reagent in DMSO. The sample throughput, working range and lower detection limit are 25-30 samples h−1, 4-60 and 2 μg mL−1, respectively. The potentiometric and spectrophotometric techniques are applied to the batch and flow injection measurements of anionic surfactants in some commercial detergent products. The results agree fairly well with data obtained using the standard methylene blue spectrophotometric method.  相似文献   

19.
A simple, low cost, and highly sensitive electrochemical sensor, based on a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode (N/IL/G/SPCE) was developed to determine zinc (Zn(II)), cadmium (Cd(II)), and lead (Pb(II)) simultaneously. This disposable electrode shows excellent conductivity and fast electron transfer kinetics. By in situ plating with a bismuth film (BiF), the developed electrode exhibited well-defined and separate peaks for Zn(II), Cd(II), and Pb(II) by square wave anodic stripping voltammetry (SWASV). Analytical characteristics of the BiF/N/IL/G/SPCE were explored with calibration curves which were found to be linear for Zn(II), Cd(II), and Pb(II) concentrations over the range from 0.1 to 100.0 ng L−1. With an accumulation period of 120 s detection limits of 0.09 ng mL−1, 0.06 ng L−1 and 0.08 ng L−1 were obtained for Zn(II), Cd(II) and Pb(II), respectively using the BiF/N/IL/G/SPCE sensor, calculated as 3σ value of the blank. In addition, the developed electrode displayed a good repeatability and reproducibility. The interference from other common ions associated with Zn(II), Cd(II) and Pb(II) detection could be effectively avoided. Finally, the proposed analytical procedure was applied to detect the trace metal ions in drinking water samples with satisfactory results which demonstrates the suitability of the BiF/N/IL/G/SPCE to detect heavy metals in water samples and the results agreed well with those obtained by inductively coupled plasma mass spectrometry.  相似文献   

20.
In this work, 1,10-phenanthroline was used as a complexing agent for the separation and preconcentration of Cd(II), Co(II), Ni(II), Cu(II) and Pb(II) on activated carbon. The metals were adsorbed on activated carbon by two methods: static (1) and dynamic (2). The optimal condition for separation and quantitative preconcentration of metal ions with activated carbon for the proposed methods was for (1) in the static methods in the pH range 7-9. The desorption was found quantitative with 8 mol dm−3 HNO3 for Cd(II) (92.6%), Co(II) (95.6%), Pb(II) (91.0%), and with 3 mol dm−3 HNO3 for Cd(II) (95.4%), Pb(II) (100.2%). The preconcentration factor was 100 with R.S.D. values between 1.0 and 2.9%. For (2), the dynamic method (SPE), the pH range for the quantitative sorption was 7-9. The desorption was found quantitative with 8 mol dm−3 HNO3 for Cd(II) (100.6%), Pb(II) (94.4%), and reasonably high recovery for Co(II) (83%), Cu(II) (88%). The optimum flow rate of metal ions solution for quantitative sorption of metals with 1,10-phenanthroline was 1-2 cm3 min−1 whereas for desorption it was 1 cm3 min−1. The preconcentration factor was 50 for all the ions of the metals with R.S.D. values between 2.9 and 9.8%.The samples of the activated carbon with the adsorbed trace metals can be determined by ICP-OES after mineralization by means of a high-pressure microwave mineralizer. The proposed method provides recovery for Cd (100.8%), Co (97.2%), Cu (94.6%), Ni (99.6%) and Pb (100.0%) with R.S.D. values between 1.2 and 3.2%.The preconcentration procedure showed a linear calibration curve within the concentration range 0.1-1.5 μg cm−3. The limits of detection values (defined as “blank + 3s” where s is standard deviation of the blank determination) are 5.8, 70.8, 6.7, 24.6, and 10.8 μg dm−3 for Cd(II), Pb(II), Co(II), Ni(II) and Cu(II), respectively, and corresponding limit of quantification (blank + 10s) values were 13.5, 151.3, 20.0, 58.9 and 33.2 μg dm−3, respectively.As a result, these simple methods were applied for the determination of the above-mentioned metals in reference materials and in samples of plant material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号