首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The application of the cloud point extraction (CPE) technique for capillary electrophoresis (CE) determination of metal ions was demonstrated using Cu(II) and Co(II) as model metal ions. The preconcentration of Cu(II) and Co(II) in aqueous solution was achieved by CPE with 1-(2-pyridylazo)-2-naphthol (PAN) as the chelating agent and Triton X-114 as the extractant. Baseline separation of the PAN chelates of Cu(II) and Co(II) was realized by CE with a photodiaode array detector in a  μm i.d. fused-silica capillary at 17 kV. A 50 mM NH4Ac buffer solution (pH 8.0) containing 0.2 mM of PAN in 80% (v/v) of acetonitrile and 20% (v/v) doubly deionized water (DDW) was used as the separation medium to avoid the adsorption of hydrophobic substances and nonionic surfactant Triton X-114 onto the inner surface of the separation capillary, ensuring the separation efficiency and reproducibility. The precision (relative standard deviation (R.S.D.), n=5) for five replicate injections of a mixture of 20 μg/l of Co(II) and Cu(II) were 0.74 and 1.8% for the migration time, 3.1 and 0.64% for the peak area measurement, respectively. The apparent concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for CE separation and in the initial solution, was 15.9 for Co(II) and 16.3 for Cu(II). The linear concentration range was from 3 to 100 μg/l for both Co(II) and Cu(II). The detection limits of Co(II) and Cu(II) were 0.12 and 0.26 μg/l, respectively. The developed method was successfully applied to the determination of Co(II) and Cu(II) in tap water, snow water, and flavor wines.  相似文献   

2.
A new approach, employing cloud point extraction (CPE) in combination with thermal lens spectrometry (TLS), has been developed for the determination of cobalt. The CPE and TLS methods have good matching conditions for combination because TLS is suitable for low volume samples obtained after CPE and for organic solvents, which are used for dissolving the remaining analyte phase.1-(2-Pyridylazo)-2-naphthol (PAN) was used as a complexing agent and octylphenoxypolyethoxyethanol (Triton X-114) was added as a surfactant; then the pH of solution was adjusted. After phase separation at 50 °C based on the cloud point extraction of the mixture, the surfactant-rich phase was dried and the remaining phase was dissolved using 20 μL of carbon tetrachloride. The obtained solution was introduced into the quartz micro cell and the analyte was determined by thermal lens spectrometry. The He-Ne laser (632.8 nm) was used as both the probe and the excite source.Under optimum conditions, the analytical curve was linear for the concentration range of 0.2-40 ng mL−1 and the detection limit was 0.03 ng mL−1. The enhancement factor of 470 was achieved for a 10 mL sample. Relative standard deviations were lower than 5%.The method was successfully applied to the extraction and determination of cobalt in tap, river and sea water.  相似文献   

3.
A thermospray flame furnace atomic absorption spectrometer (TS-FF-AAS) was employed for Co determination in biological materials. Cobalt presents a high atomization temperature and consequently poor sensitivity is obtained without changing its thermochemical behavior. The effect of different complexing agents on sensitivity was evaluated based on the formation of Co volatile compounds. A cloud point procedure was optimized for Co preconcentration for further improvement of sensitivity. Samples were treated with 1 mol l− 1 hydrochloric acid solution for quantitative extraction of Co without simultaneous extraction of Fe, since it is a strong interferent. After the extraction and preconcentration steps, a sample volume of 150 μl was introduced into the hot Ni tube using air as carrier at a flow-rate of 0.4 ml min− 1. The best sensitivity was attained using ammonium pyrrolidinedithiocarbamate (APDC) and Triton X-114 was employed for implementation of the cloud point procedure. The detection limit obtained for Co was 2.1 μg l− 1 and the standard deviation was 5.8% for a solution containing 100 μg l− 1 (n = 10). Accuracy was checked using two certified reference materials (tomato leaves and bovine liver) and results were in agreement with certified values at a 95% confidence level. Employing the developed procedure, Co were quantified in different biological materials (plant and animal tissues). The proposed method presents suitable sensitivity for cobalt determination in the quality control of foods.  相似文献   

4.
A new combined method including fiber optic-linear array detection spectrophotometry (FO-LADS) and cloud point extraction (CPE) was developed using a cylindrical micro cell for simultaneous preconcentration and determination of different species. The CPE and FO-LADS methods have good matching conditions for combination because FO-LADS is suitable as a detection technique for the low volume of remained phase obtained after CPE. This combination was carried out using 50 μL cylindrical micro cell and then employed for simultaneous preconcentration and determination of cobalt and nickel.Cloud point extraction method was based on the chromogenic reaction of metal ions and 1-(2-pyridylazo)-2-naphthol (PAN) and then preconcentration of formed complexes using octylphenoxypolyethoxyethanol (Triton X-114). The remained phase after CPE was transferred into cylindrical micro cell and located at the cell holder of FO-LADS. The spectra of cobalt and nickel complexes were collected by FO-LADS and processed for ordinary and first derivative spectrophotometry.Optimization of different parameters was evaluated. Under optimum conditions, calibration curves were linear in the range of 0.6-30.0 and 0.1-15.0 μg L−1 with detection limits of 0.2 and 0.04 μg L−1 for Co and Ni respectively. The relative standard deviations (R.S.D.s) were lower than 4%. The obtained enhancement factors were 198 and 199 for cobalt and nickel, respectively.The proposed method was compared with the other methods and applied to the analysis of several real and spiked samples.  相似文献   

5.
6.
浊点萃取-紫外可见分光光度法测定痕量钴   总被引:1,自引:0,他引:1  
浊点萃取(Cloud-Point Extraction,简称CPE)是近年来出现的一种新兴的液-液萃取技术,该法以表面活性剂胶束水溶液的溶解性和浊点现象为基础,通过改变实验参数如溶液pH值、离子强度、温度等引发相分离,将疏水性物质与亲水性物质分离,同时起到富集的作用.  相似文献   

7.
Persistent organic pollutants (POPs) are recognized as a class of poisonous compounds which pose risks of causing adverse effects to human health and the environment. Thus, it is very important to detect POPs in environmental and biological samples. The identification and determination of very low levels of POPs in complex matrices is extremely difficult. Recently a promising environmentally benign extraction and preconcentration methodology based on cloud point extraction (CPE) has emerged as an efficient sample pretreatment technique for the determination of trace/ultra-trace POPs in complex matrices. The purpose of this paper is to review the past and latest use of CPE for preconcentrating POPs and its coupling to different contemporary instrumental methods of analysis. First, the comparison of various extraction techniques for POPs is described. Next, the general concept, influence factors and other methods associated with CPE technique are outlined and described. Last, the hyphenations of CPE to various instrumental methods for their determination are summarized and discussed.  相似文献   

8.
Cloud point extraction (CPE) was used to extract and separate lanthanum(III) and gadolinium(III) nitrate from an aqueous solution. The methodology used is based on the formation of lanthanide(III)-8-hydroxyquinoline (8-HQ) complexes soluble in a micellar phase of non-ionic surfactant. The lanthanide(III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud point temperature (CPT). The structure of the non-ionic surfactant, and the chelating agent-metal molar ratio are identified as factors determining the extraction efficiency and selectivity. In an aqueous solution containing equimolar concentrations of La(III) and Gd(III), extraction efficiency for Gd(III) can reach 96% with a Gd(III)/La(III) selectivity higher than 30 using Triton X-114. Under those conditions, a Gd(III) decontamination factor of 50 is obtained.  相似文献   

9.
Abstract

Cloud point extraction (CPE) is a simple, inexpensive and green sample enrichment technique for different analytes in different matrices. In this technique surfactant solution is used at concentration above critical micelle concentration to extract the analytes from various matrices. Capillary electrophoresis (CE) and family of related techniques have emerged as powerful analytical techniques for pharmaceutical, biomedical, food and environmental analysis. In this review we have described the applications of CPE coupling with CE.  相似文献   

10.
A cloud point extraction (CPE) method has been developed for the preconcentration of trace aluminum prior to its determination by flame atomic absorption spectrometry (FAAS). The CPE method is based on the complex of Al(III) with Xylidyl Blue (XB) and then entrapped in non-ionic surfactant Triton X-114. The main factors affecting CPE efficiency, such as pH of sample solution, concentration of XB and Triton X-114, equilibration temperature and time, were investigated in detail. An enrichment factor of 50 was obtained for the preconcentration of Al(III) with 50 mL solution. Under the optimal conditions, the detection limit of this method for Al(III) is 1.43 μg L− 1, and the relative standard deviation is 2.7% at determination of 100 μg L− 1 Al(III). The proposed method has been applied for determination of trace amount of aluminum in mineral water samples with satisfactory results. Also, the proposed method was applied to the certified reference materials. The results obtained were in good agreement with certified values.  相似文献   

11.
Recently, cloud point extraction (CPE) has been an attractive subject as an alternative to liquid–liquid extraction. The technique is based on the property of most non-ionic surfactants in aqueous solutions to form micelles and become turbid when heated to the cloud point temperature. This review covers a selection of the literature published on applications of CPE in determination of metal ions over the period between 2004 and 2008.  相似文献   

12.
Pedro R. Aranda 《Talanta》2008,77(2):663-666
Cloud point extraction (CPE) has been used for the preconcentration of cadmium, after the formation of a complex with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP), and further determination by graphite furnace atomic absorption spectrometry (ETAAS) using polyethyleneglicolmono-p-nonyphenylether (PONPE 7.5) as surfactant. The chemical variables that affect the cloud point extraction were optimized. The separation of the two phases was easily accomplished by cooling the mixture in order to make more viscous the surfactant-rich phase. In order to establish the optimum conditions for the determination of Cd by ETAAS, Pd + Mg, Pt, Ir, Rh and Ru were studied as chemical modifiers. The best thermal stabilization was obtained with Pd + Mg, with a maximum pyrolysis temperature of 1100 °C. Under the optimum conditions i.e., pH 9.0, [5-Br-PADAP] = 2.0 × 10−5 mol L−1, [PONPE 7.5] = 0.02% (w/v), an enhancement factor of 22-fold was reached. The lower limit of detection (LOD) obtained under the optimal conditions was 0.008 μg L−1. The precision for 10 replicate determinations at 0.2 μg L−1 Cd was 3.5% relative standard deviation (R.S.D.). The calibration graph using the preconcentration method was linear with a correlation coefficient of 0.9984 at levels close to the detection limit up to at least 1.0 μg L−1. The method was successfully applied to the determination of cadmium in urine samples and in a water standard reference material.  相似文献   

13.
建立了以四甲基联苯胺(TMB)为络合剂,非离子表面活性剂Triton-114为萃取剂的浊点萃取-紫外可见分光光度法测定痕量金的方法。考察了溶液的pH、络合剂和表面活性剂浓度、平衡温度和时间等条件对浊点萃取的影响。在最优条件下,该方法对金的富集倍数为12倍,线性范围为0~0.5μg/mL,检出限(3σ)为8.6ng/mL,相对标准偏差RSD为2.3%~3.6%(n=6),回收率在97%~102%之间。方法已用于工业废水中痕量金的测定。  相似文献   

14.
A CPE-HPLC (UV) method was developed for the determination of Sudan (I-IV) dyes, non-ionic surfactant Triton X-100 was used to extract and preconcentrate Sudan dyes from chilli powder prior to their determination by HPLC-UV. The separation and determination of Sudan dyes was then carried out in the HPLC-UV system with isocratic elution, and the detector was set at 500 nm. The parameters and variables that affect the extraction were investigated. Under optimum conditions: 3% of Triton X-100 (W/V), 10% of Na2CO3 (W/V), heat-assisted at 70 °C for 30 min. Recoveries of the Sudan dyes ranged from 80.70% to 85.45% in chilli powder by CPE method, with all the relative standard deviations of less than 3%. Limit of detection (LOD) and limit of quantification (LOQ) were in the range of 2.0-4.0 and 7.0-12.0 μg kg−1 in chilli powder, respectively.  相似文献   

15.
浊点萃取-火焰原子吸收光谱法测定淡水鱼中痕量铅   总被引:2,自引:0,他引:2  
采用以双硫腙为络合剂、Triton X-100为表面活性剂的新型浊点萃取体系富集淡水鱼中的痕量铅,并用火焰原子吸收光谱法对其进行测定。探讨了溶液pH、表面活性剂浓度、络合剂用量、平衡温度、平衡时间等对浊点萃取及测定灵敏度的影响,优化了实验条件。在最佳条件下测得铅的检出限为0.090μg/L,校准曲线相关系数为0.9999。该方法已用于淡水鱼中痕量铅的测定。  相似文献   

16.
A comparative study between cloud point extraction (CPE) and low-temperature directed crystallization (LTDC) is presented. Trace elements (Cd, Pb, Cr, Cu, Zn, Ni and Fe) were preconcentrated by both methods from model and natural water samples and the results were evaluated with respect to extraction efficiency, accuracy, precision, sample throughput and interferences. Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were used for the final measurements. The results indicate that these extraction and preconcentration procedures ensure the required accuracy and precision for the reliable identification and quantification of trace elements in natural waters. Drawbacks of each method identified can further assist the analyst towards a better application of each method depending on the target species, the detector employed and the application intended (routine analysis, trace analysis, speciation analysis, etc.).  相似文献   

17.
Tang AN  Ding GS  Yan XP 《Talanta》2005,67(5):942-946
Cloud point extraction was applied as a preconcentration step for electrothermal atomic absorption spectrometry (ETAAS) determination of As(III) in aqueous solutions. After complexation with ammonium pyrrolidinedithiocarbamate, the analyte was quantitatively extracted to the surfactant-rich phase in the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. 0.1 mol L−1 HNO3 in methanol was added to the surfactant-rich phase before ETAAS determination. The precision (R.S.D.) for 11 replicate determinations of 5.0 μg L−1 of As(III) was 3.0%. The concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for ETAAS determination and in the initial solution, was 36 for As(III). The linear concentration range was from 0.1 to 20 μg L−1. The developed method was applied to the determination of As(III) in lake water and river water.  相似文献   

18.
Isoniazid (INH) reacted with p-dimethylaminobenzaldehyde (DABD) in the presence of trichloroacetic acid to give isonicotinylhydrazone (INZ) having λmax 365 nm. Cloud point extraction (CPE) is carried out to extract INH and IHZ in aqueous solutions using surfactant poly(ethylene glycol) 4000 (PEG4000), respectively. Langmuir model is used to study the adsorption behaviors of the two solutes on micelles of PEG4000. A linear correlation is found between variation of PEG4000 concentration required for feed concentration of the two solutes and used to predict PEG4000 concentration required for extracting INH and IHZ in CPE procedure. The results calculated show that, for a desired recovery level of 90%, only can IHZ be sufficiently extracted by PEG4000. In this experiment, the feed concentration of PEG4000 is defined by above-mentioned correlation, and the effects of other operating parameters, e.g., concentration of salt, pH and centrifugation time on extraction of PEG4000-IHZ system have also been studied in detail. The proposed CPE method coupled with HPLC-UV system is successfully used for the determination of INH in urine sample.  相似文献   

19.
20.
The possibility was investigated of using 2-mercaptobenzothiazole (MBT) for Ag(I) concentration by micellar extraction at cloud point (CP) temperature and subsequent determination by flame atomic absorption spectrometry (FAAS). The method is based on the complexation of Ag(I) with 2-mercaptobenzothiazole (MBT) in the presence of non-ionic micelles of Triton X-114. The effect of experimental conditions such as pH, concentration of chelating agent and surfactant, equilibration temperature and time on cloud point extraction was studied. Under the optimum conditions, the preconcentration of 10 mL of water sample in the presence of 0.1% Triton X-114 and 2 × 10−4 mol L−1 2-mercaptobenzothiazole permitted the detection of 2.2 ng mL−1 silver. The calibration graph was linear in the range of 10–200 ng mL−1, and the recovery of more than 99% was achieved. The proposed method was used in FAAS determination of Ag(I) in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号