首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a micelle-mediated phase separation in the presence of electrolyte as a preconcentration method for cadmium determination by flame atomic absorption spectrometry (FAAS). Cadmium was complexed with ammonium O,O-diethyldithiophosphate (DDTP) in an acidic medium (0.32 mol l 1 HCl) using Triton X-114 as surfactant and quantitatively extracted into a small volume (about 20 μl) of the surfactant-rich phase after centrifugation. The chemical variables that affect the cloud point extraction, such as complexing time (0–20 min), Triton X114 concentration (0.043–0.87% w/v) and complexing agent concentration (0.01–0.1 mol l 1), were investigated. The cloud point is formed in the presence of NaCl at room temperature (25 °C), and the electrolyte concentration (0.5–5% w/v) was also investigated. Under optimized conditions, only 8 ml of sample was used in the presence of 0.043% w/v Triton X-114 and 1% (w/v) NaCl. This method permitted limits of detection and quantification of 0.9 μg l 1 and 2.9 μg l 1 Cd, respectively, and a linear calibration range from 3 to 400 μg l 1 Cd. The proposed method was applied to Cd determination in physiological solutions (containing 0.9% (w/v) of NaCl), mineral water, lake water and cigarette samples (tobacco).  相似文献   

2.
Solid-phase extraction (SPE) along with reversed-phase liquid chromatography (RP-LC) was used for the simultaneous determination of Zr(IV) and Hf(IV) by means of their ternary chelates with fluoride and 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP). The conditions of SPE sorption were examined in detail: type of SPE column, volume of the sample, volume of the eluent, concentrations of metal ions, fluoride salt, chromogenic reagent, organic phase, and pH. It was established that the sorption of Zr(IV) and Hf(IV), as their ternary chelates, on SPE Zorbax SPE C18 (EC) cartridge was the most efficient, when the sample containing metal ion (Zr(IV), Hf(IV), both, up to 2 μg), 5-Br-PADAP 1.5×10−4, NaF 7.5×10−5 mol l−1, methanol 40%, pH 4.5±1 was applied for the SPE sorption. The chelates were discarded from SPE cartridge using acetonitrile/water (99.75+0.25, v/v) eluent containing 3.8×10−4 mol l−1 sodium fluoride and subsequently separated by RP-LC method. The RP-LC separation of both chelates was optimized and Zorbax SB-C18 analytical LC column along with acetonitrile/water (65+35, v/v) eluent containing the 1.5×10−4 mol l−1 sodium fluoride was used. The established SPE/LC conditions allow Zr(IV) 0.08-2.0 μg and Hf(IV) 0.04-2.0 μg determination in a sample volume up to 150 ml. The detection limits, 0.03 μg Hf(IV) and 0.05 μg Zr(IV), were obtained. Recoveries, (94±2)% for Hf(IV) chelate and (106±2)% for Zr(IV) chelate were obtained, when 1 μg of Zr(IV) and Hf(IV) ions were determined by the present SPE/LC method from the sample volume of 100 ml. The established, pre-concentration SPE conditions, along with the LC separation and determination allow the assay of Zr(IV) and Hf(IV) in complicated matrix materials. The present SPE/LC method was applied to the determination of Zr(IV) and Hf(IV) in tap water and reference geological material (rock, NCS DC 73303; certified content: Zr, 27.7×10−3% (w/w) and Hf, 6.5×10−4% (w/w)).  相似文献   

3.
A robust flow injection (FI) on-line liquid-liquid extraction (LLE) preconcentration/separation system associated with a newly designed gravitational phase separator, coupled to flame atomic absorption spectrometry (FAAS) was developed. The performance of the system was illustrated for cadmium determination at the μg l−1 level. The non-charged cadmium complex with ammonium pyrrolidine dithiocarbamate (APDC) was extracted on-line into isobutyl methyl ketone (IBMK). The organic phase was effectively separated from a large volume of aqueous phase and is led into a 100 μl loop of an injection valve before its introduction into the nebulizer. The system was optimized and offered good performance characteristics with unlimited life time of phase separator, greater flow rate ratios and improved flexibility, as compared with other solvent extraction preconcentration systems. With a sampling frequency of 33 h−1, the enhancement factor was 155, the detection limit was 0.02 μg l−1, the relative standard deviation was 3.2% at 2.0 μg l−1 Cd concentration level and the calibration curve was linear over the concentration range 0.06-6.0 μg l−1. The accuracy of the proposed method was evaluated by analyzing a certified reference material of water and by recovery measurements on spiked samples. Finally, it was successfully applied to the analysis of tapwater, river and seawater samples.  相似文献   

4.
In this work, a procedure for preconcentration of cobalt using dispersive liquid–liquid microextraction (DLLME) with the reagent Br-TAO as complexing reagent was developed. The procedure is based on a ternary system of solvents, where appropriate amounts of the extraction solvent, disperser solvent and the chelating agent Br-TAO are directly injected into an aqueous solution containing Co(II). A cloudy mixture is formed and the ions are extracted in the fine droplets of the extraction solvent. After extraction, the phase separation is performed with a rapid centrifugation, and cobalt is determined in the enriched phase by FAAS. Under the optimized conditions, the detection limit obtained was 0.9 µg L− 1. The enrichment factor and the consumptive index were 16 and 0.31 mL, respectively. The accuracy of the method was tested by the determination of cobalt in certified reference material of spinach leaves, NIST 1570a. The proposed procedure was successfully applied to the determination of cobalt in water samples.  相似文献   

5.
In this study, a simple, rapid and efficient method, dispersive liquid-liquid microextraction (DLLME) combined gas chromatography-electron capture detection (GC-ECD), for the determination of chlorobenzenes (CBs) in water samples, has been described. This method involves the use of an appropriate mixture of extraction solvent (9.5 μl chlorobenzene) and disperser solvent (0.50 ml acetone) for the formation of cloudy solution in 5.00 ml aqueous sample containing analytes. After extraction, phase separation was performed by centrifugation and the enriched analytes in sedimented phase were determined by gas chromatography-electron capture detection (GC-ECD). Our simple conditions were conducted at room temperature with no stiring and no salt addition in order to minimize sample preparation steps. Parameters such as the kind and volume of extraction solvent, the kind and volume of disperser solvent, extraction time and salt effect, were studied and optimized. The method exhibited enrichment factors and recoveries ranging from 711 to 813 and 71.1 to 81.3%, respectively, within very short extraction time. The linearity of the method ranged from 0.05 to 100 μg l−1 for dichlorobenzene isomers (DCB), 0.002-20 μg l−1 for trichlorobenzene (TCB) and tetrachlorobenzene (TeCB) isomers and from 0.001 to 4 μg l−1 for pentachlorobenzene (PeCB) and hexachlorobenzene (HCB). The limit of detection was in the low μg l−1 level, ranging between 0.0005 and 0.05 μg l−1. The relative standard deviations (R.S.D.s) for the concentration of DCB isomers, 5.00 μg l−1, TCB and TeCB isomers, 0.500 μg l−1, PeCB and HCB 0.100 μg l−1 in water by using the internal standard were in the range of 0.52-2.8% (n = 5) and without the internal standard were in the range of 4.6-6.0% (n = 5). The relative recoveries of spiked CBs at different levels of chlorobenzene isomers in tap, well and river water samples were 109-121%, 105-113% and 87-120%, respectively. It is concluded that this method can be successfully applied for the determination of CBs in tap, river and well water samples.  相似文献   

6.
A sensitive and selective flow injection time-based method for on-line preconcentration/separation and determination of gallium by flame atomic absorption spectrometry at trace levels was developed. The on-line formed gallium chloride complex is sorbed onto a polyether-type polyurethane foam mini-column, followed by on-line quantitative elution with isobutyl methyl ketone and direct introduction into the flame pneumatic nebulizer of the atomic absorption spectrometer. All chemical and flow variables of the system as well as the possible interferences were studied. The manner of strong HCl solutions propulsion was investigated and established using a combination of two displacement bottles. For 90 s preconcentration time, a sample frequency of 28 h−1, an enhancement factor of 40, a detection limit of 6 μg l−1 and a precision expressed as relative standard deviation (sr) of 3.3% (at 1.00 mg l−1) were achieved. The calibration curve is linear over the concentration range 0.02-3.00 mg l−1. The accuracy of the developed method was sufficient and evaluated by the analysis of a silicon-aluminum alloy standard reference material. Finally, it was successfully applied to gallium determination in commercial aluminum alloys, natural waters and urine.  相似文献   

7.
A rapid and simple method for the extraction and preconcentration of N-methylcarbamates (NMCs) (carbofuran, carbaryl and promecarb) in water samples using dispersive liquid–liquid microextraction (DLLME) using chemometrics was developed. Influence variables such as volume of extracting (CHCl3) and dispersing solvents (ACN), pH and ionic strength, extraction time and centrifugation time and speed were screened in a 27–4 Plackett–Burman design was investigated. The significant variables were optimized by using a central composite design (CCD) combined with desirability function (DF). At optimum conditions values of variables set as 126 μL chloroform, 1.5 mL acetonitrile, 1 min extraction time, 10 min centrifugation at 4000 rpm min−1, natural pH, 4.7% (w/v) NaCl, the separation was reached in less than 14 min using a C18 column and an isocratic binary mobile phase (acetonitrile: water (50:50, v/v)) with flow rate of 1.0 mL min−1. At optimum conditions method has linear response over 0.001–10 μg mL−1 with detection limit between 0.0001 and 0.0005 μg mL−1 with relative standard deviations (RSDs) in the range 2.18–5.06% (n = 6).  相似文献   

8.
A liquid-liquid extraction flow analysis procedure for the spectrophotometric determination of molybdenum in plants at μg l−1 level is described. The flow network comprised a set of solenoid valves assembled to implement the multicommutation approach under microcomputer control. Radiation source (LED, 475 nm), detector (photodiode) and separation chamber were nested together with the flow cell comprising a compact unit. The consumption of reagents (potassium thiocyanate and stannous chloride) and also extracting solvent (isoamyl alcohol) were optimized to 32 mg and 200 μl per determination, respectively. Accuracy was assessed by comparing results with those obtained with ICP-OES and no significant difference at 95% confidence level was observed. Other favorable characteristics such as a linear response ranging from 25 to 150 μg l−1 molybdenum (r=0.999); detection limit of 4.6 μg l−1 sample throughput of 25 determinations per hour and relative standard deviation of 2.5% (n=10) were also achieved.  相似文献   

9.
An on-line system for preconcentration and determination of copper at μg l−1 level by flame atomic absorption spectrometry (FAAS) is proposed. Amberlite XAD-2 functionalized with 3,4-dihydroxybenzoic acid packed in a minicolumn was used as sorbent. Copper(II) ions were sorbed in the minicolumn, from which it could be eluted by hydrochloric acid solution directly to the nebulizer-burner system of the FAAS. Eluent solution was carried by water at a flow rate of 5.00 ml min−1. Signals were measured as peak height by using an instrument software. Achieved sampling rate was 27 samples per hour. Analytical parameters were evaluated and the results demonstrated that copper can be determined, with acetate buffer to adjust the sample pH at 6.0, preconcentration time of 120 s and a sample flow rate of 6.50 ml min−1. The desorption was carried out with 30 μl of a 1.0 mol l−1 hydrochloric acid solution. An enrichment factor of 33 in 13.00 ml of sample (120 s preconcentration time) was achieved by using the time-based technique. The detection limit (DL) (3 s) was 0.27 μg l−1 and the precision (assessed as the relative standard deviation) reached values of 5.7-1.1% in copper solutions of 5.00 to 50.00 μg l−1 concentration, respectively. The accuracy of procedure was confirmed by copper determination in certified reference materials. Recoveries of spike additions (1.0 or 2.0 μg g−1) to food samples were quantitative (90.0-110.0%). These results proved also that the procedure is not affected by matrix interference and can be applied satisfactorily for copper determination in rice flour and starch samples.  相似文献   

10.
Liu J  Cao W  Yang X  Wang E 《Talanta》2003,59(3):453-459
Tris(2,2′-bipyridyl)ruthenium(II) electrochemiluminescence detection in a capillary electrophoresis separation system was used for the determination of diphenhydramine. In this study, platinum disk electrode (300 μm in diameter) was used as a working electrode and the influence of applied potential and buffer conditions were investigated. Under optimal conditions: 1.2 V applied potential, pH 8.50, 15 kV separation voltage and 10 mmol l−1 running buffer, the calibration curve of diphenhydramine was linear over the range of 4×10−8 to 1×10−5 mol l−1. This technique gave satisfactory precision, and relative standard deviations of migration times and chemiluminescence peak intensities were less than 1 and 6%, respectively. The technique was applied to animal studies for determination of diphenhydramine extracted from rabbit plasma and urine samples, and the extraction efficiency were between 92 and 98.5%.  相似文献   

11.
Doğutan M  Filik H  Tor I 《Talanta》2003,59(5):1053-1060
A new melamine based polymeric sequestering resin was prepared for preconcentration and separation of hexavalent chromium from water, and its sequestering action was investigated. The water-insoluble, cross-linked sequestering resin was formed by reaction with bromosuccinic acid and cross-linking of melamine. The active sequestering group on the resin is NH-(Succinic acid) or salt thereof. The resulting chelating resin was characterized by infrared spectra. The newly prepared resin quantitatively retained Cr(VI) at pH 2.0-4.0 when the flow rate was maintained between 1 and 5 ml min−1. The retained Cr(VI) was instantaneously eluted with 25 ml of 0.1 M NaOH. The chromium species were determined by a flame atomic absorption spectrometer. The limits of detection for Cr(VI) and Cr(III) were found to be 5.3 and 4.2 μg l−1, respectively. The precision and accuracy of the proposed procedure was checked by the use synthetic and reference steel samples. The established preconcentration method was successfully applied to the determination and selective separation of Cr(VI) in electroplating industry wastewater. Total concentrations determined by the spectrophotometric method (110.3±0.6 g l−1 Cr(VI) and 1.2±0.3 g l−1 Cr(III)) are compared with those found by FAAS and the obtained results (110.4±1.8 g l−1 Cr(VI) and 1.4±0.5 g l−1 Cr(III)) show good agreement.  相似文献   

12.
Zhao RS  Lao WJ  Xu XB 《Talanta》2004,62(4):751-756
In the present work, a novel method for the determination of trihalomethanes (THMs) such as chloroform, dichlorobromomethane, chlorodibromomethane and bromoform in drinking water has been described. It is based on coupling headspace liquid-phase microextraction (HS-LPME) with gas chromatography-electron capture detector (GC-ECD). A microdrop of organic solvent at the tip of a commercial microsyringe was used to extract analytes from aqueous samples. Three organic solvents—xylene, ethylene glycol and 1-octanol—were compared and 1-octanol was the most sensitive solvent for the analytes. Extraction conditions such as headspace volume, extraction time, stirring rate, content of NaCl and extraction temperature were found to have significant influence on extraction efficiency. The optimized conditions were 15 ml headspace volume in a 40 ml vial, 10 min extraction time and 800 rpm stirring rate at 20 °C with 0.3 g ml−1 NaCl. The linear range was 1-100 μg l−1 for THMs. The limits of detection (LODs) ranged from 0.15 μg l−1 (for dichlorobromomethane and chlorodibromomethane) to 0.4 μg l−1 (for chloroform); and relative standard deviations (RSD) for most of THMs at the 10 μg l−1 level were below 10%. Real samples collected from tap water and well water were successfully analyzed using the proposed method. The recovery of spiked water samples was from 101 to 112%.  相似文献   

13.
A radiochemical neutron activation method for the simultaneous determination of arsenic, cadmium, cobalt, mercury, molybdenum, and zinc in fresh water is described. The method is based on anion-exchange separation in hydrochloric acid media followed by simple precipitations. The determination limits, based on analysis of a 5-ml sample without preconcentration, and with a well-type NaI(Tl) detector, are as follows: As, 10-3 μg l-1 ; Cd, 6 × 10-2 μg l-1 ; Co, 4 × 10-3 μg l-1 ; Hg, 7 × 10-3 μg l-1 ; Mo, 10-1 μg l-1 ; Zn, 2 × 10-1 μg l-1. The method is adequate for the analysis of natural fresh waters.  相似文献   

14.
This paper presents a method whereby trace elements in NH4Cl-NH3 medium are adsorbed on activated carbon in a micro-flow-injection (FI) semi-online sorbent extraction preconcentration system and then determined by graphite furnace atomic absorption spectrometry (GFAAS). The analytical performance of the proposed method for determining Cd, Mn and Pb was studied. A microcolumn packed with activated carbon was used as a preconcentration column (PCC). The metals to be determined were preconcentrated onto the column for 60 s and then rinsed with 0.02% (v/v) HNO3 and eluted with 30 μl of 2 mol l−1 HNO3. Compared with the direct injection of 30 μl of aqueous sample solution, enrichment factor of 32, 26, and 21 and detection limits (3σ) of 0.4, 4.7, and 7.5 ng l−1 for Cd, Mn and Pb, respectively, were obtained with 60 s sample loading at 3.0 ml min−1 for sorbent extraction, 30 μl of eluate injection, and peak area measurement. The precisions (RSD, n=6) were 2.8% at the 0.05 μg l−1 level for Cd, 3.0% at the 0.3 μg l−1 level for Mn, and 3.1% at the 0.5 μg l−1 level for Pb. The experimental results indicate that the procedure can eliminate the fundamental interferences caused by alkali and alkaline earth metals and the application of it to the determination of Cd, Mn and Pb in some water samples is successful.  相似文献   

15.
Non-chromatographic speciation approaches have been developed for determination of water-soluble and phosphate-exchangeable As(III) and As(V) in certified reference materials of coal fly ash and sediments by FI-HGAAS. A 2IV6-2 fractional factorial design was employed for screening optimisation of the flow injection manifold. A simple two-stage sequential extraction protocol involving deionized water and a phosphate buffer as extractants was employed. Determination of both oxidation states of As in the extracts could be accomplished following arsine generation under different reaction conditions, namely, (i) selective determination of As(III) in citric acid medium or using soft generation conditions (i.e. low HCl and NaBH4 concentrations); (ii) determination of total As in each extract using thioglycollic acid as reaction medium or after pre-reduction of As(V) to As(III) with a KI+ascorbic acid mixture. The As(V) content was estimated by difference between both measurements. Reaction conditions were previously optimised and analytical parameters in each reaction medium were established. Overall, the extractable As content was less than 5% in sediment and fly ash CRMs. The LOD of As was around 0.07 μg l−1 for As(III) determination, and 0.06 μg l−1 for total As determination after prereduction. Liquid chromatography coupled to atomic fluorescence spectrometry with post-column hydride generation was used for comparison.  相似文献   

16.
A method for the determination of iron in indium phosphide (InP) wafer is proposed. In the present experiment, an on-line matrix separation system using an ion exchange column was combined with inductively coupled plasma mass spectrometry (ICP-MS) for the determination of ng g−1 level of iron. In the on-line matrix separation, indium and iron in the sample solution was passed through a strongly-basic anion exchange resin column with the 9 M HCl carrier solution, where indium was eluted from the column and iron was adsorbed on it. Then, iron was eluted with the carrier solution of 0.3 M HCl containing 1 ng ml−1 cobalt, and it was directly introduced into the ICP-MS nebulizer. In ICP-MS measurement, cobalt in the carrier solution was used as an internal standard to correct the change in sensitivity due to matrix effect, and the peak area integration was performed to quantify iron and cobalt in the integration time range of 20-60 s from the start of the cobalt solution flow. The detection limit (3σ) for iron was 3 ng g−1, and the recoveries for iron in the 0.8, 2.4, and 8.0% indium solutions were almost 100%. The method was applied to the determination of iron in commercially available iron-doped InP wafers. The obtained results for InP wafer samples with the high iron concentration were in good agreement with those obtained by graphite furnace atomic absorption spectrometry (GFAAS).  相似文献   

17.
A new miniaturized methodology based on the combination of headspace single drop microextraction and microvolume fluorospectrometry is proposed in this work for the determination of free and hydrolyzed formaldehyde in textile samples. The proposed method is based on the extraction and in-drop derivatization of free and hydrolyzed formaldehyde using the Hantzsch reaction. The effect of experimental variables affecting the performance of the proposed method, such as fluorescence parameters, nature of the extractant phase composition (including acetylacetone concentration, pH, ammonium acetate concentration and presence of an organic solvent), sample temperature, NaCl concentration and microextraction time was carefully investigated. Under optimized conditions, instrumental detection and quantification limits were 26 and 87 μg L−1, respectively, whereas procedural detection and quantification limits were 1.0 and 3.5 mg kg−1, respectively. Repeatability, expressed as relative standard deviation, was 4.6% (n = 9). The method was successfully applied to the determination of free and hydrolyzed formaldehyde in several textile samples, the found results being in good agreement with those obtained with the EN ISO 14184-1:1998 method.  相似文献   

18.
《Microchemical Journal》2002,73(3):279-285
A single automatic method for continuous flow determination of β-naphthol based on the enhancement of its native fluorescence once the analyte was transitorily retained on-line on a solid support (QAE A-25 resin) is reported. So, a flow-through optosensor was developed using a flow-injection analysis system with solid phase fluorimetric transduction. KCl (0.15 mol l−1) at pH 12.0 was used as carrier solution. To obtain the optimum fluorescence signal the wavelengths chosen were 245 nm (excitation) and 420 nm (emission). The response of the sensor was directly proportional to the sample volume injected in the studied range 40-1500 μl. Approximately one higher order of magnitude is achieved in sensitivity when 1500 μl are used with respect to the use of 40 μl of sample. The sensor was calibrated for three different injection volumes: 40, 600 and 1500 μl, responding linearly in the measuring range of 2-60, 0.5-15 and 0.2-5 μg l−1 with detection limits of 0.5, 0.09 and 0.05 μg l−1, respectively. The relative standard deviation for ten independent determination is 0.6% (40 μl), 0.9% (600 μl) and 2.3% (1500 μl). A recovery study was performed onto three different spiked water samples at concentration levels from 1 to 2.5 μg l−1 and the recovery percentage from the experimental data ranged between 101±2 and 105±5.  相似文献   

19.
Narin I  Soylak M 《Talanta》2003,60(1):215-221
1-(2-pyridylazo) 2-naphtol (PAN) impregnated Ambersorb 563 resin was used as solid phase extractor of copper, nickel, cadmium, lead, chromium and cobalt ions in aqueous solutions prior to their atomic absorption spectrometric determinations. The parameters including pH, sample volume, matrix effects were also investigated. The relative standard deviation (R.S.D.) of the combined method of sample treatment, preconcentration and determination with atomic absorption spectrometry is generally lower than 10%. The limit of detection was between 0.21 and 1.4 μg l−1. The results were used for preconcentration of analyte ions from natural water samples. The method was also applied to a stream sediment standard reference material (GBW7309) for the determination of Cu, Ni, Cd, Pb, Cr and Co.  相似文献   

20.
This paper reports the development of a new strategy for low-level determination of copper in water samples by using a flow-injection system coupled to solid-phase extraction (SPE) using flame atomic absorption spectrometry (F AAS) as detector. In order to preconcentrate copper from samples, a minicolumn packed with a styrene-divinylbenzene resin functionalized with (S)-2-[hydroxy-bis-(4-vinyl-phenyl)-methyl]-pyrrolidine-1-carboxylic acid ethyl ester was used and the synthesis procedure is described. System operation is based on the on-line retention of Cu(II) ions at pH 9.0 ± 0.2 in a such minicolumn with posterior analyte elution with 2 mol l−1 HCl directly to the F AAS nebulizer. The influence of several chemical (sample pH, buffer concentration, HCl eluent concentration and effect of the ionic strength) and flow (sample and eluent flow rates and preconcentration time) variables that could affect the performance of this system were investigated as well as the possible interferents. At optimized conditions, for 2 min of preconcentration time (13.2 ml of sample volume), the system achieved a detection limit of 1.1 μg l−1, a R.S.D. 1% at 20 μg g l−1 and an analytical throughput of 25 h−1, whereas for 4 min of preconcentration time (26.4 ml of sample volume), a detection limit of 0.93 μg l−1, a R.S.D. 5.3% at 5 μg l−1 and a sampling frequency of 13 h−1 were reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号