首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel selective membrane electrode for determination of ultra-trace amount of lead was prepared. The PVC membrane containing N,N′-dimethylcyanodiaza-18-cown-6 (DMCDA18C6) directly coated on a graphite electrode, exhibits a Nernstian response for Pb2+ ions over a very wide concentration range (from 1.0×10−2 to 1.0×10−7 M) with a limit of detection of 7.0×10−8 M (∼14.5 ppb). It has a fast response time of ∼10 s and can be used for at least 2 months without any major deviation in potential. The electrode revealed very good selectivity with respect to all common alkali, alkaline earth, transition and heavy metal ions. The proposed sensor was used as an indicator electrode in potentiometric titration of lead ions and in determination of lead in edible oil, human hair and water samples. The proposed sensor was found to be superior to the best Pb2+-selective electrodes reported in terms of detection limit and selectivity coefficient.  相似文献   

2.
A new coated ion-selective electrode for the determination of trace vanadyl ions (VO2+) by flow injection potentiometry (FIP) with a home-made flow cell has been developed. The PVC-based membrane was coated on a graphite electrode with an effective area of 4.90 mm2. The optimum membrane contains 5 wt.% 1,8-diaminonaphtalene as ionophore, 35 wt.% plasticizer 2-nitrophenyl octyl ether, 55 wt.% PVC and 5 wt.% additive potassium tetrakis (p-chlorophenyl) borate. The electrode in flow injection potentiometry resulted in well defined peaks for vanadyl ions with a very high sampling rate (180 injections/h). Linear calibration was obtained from 1.14×10−7 to 1.14×10−1 M vanadyl ions, with a slope of 28.3±0.3 mV per decade change in vanadyl concentration, and very low detection limit of 1.14×10−7 M and the electrode can be used for at least 1 months without any considerable change in potential response. Selectivity coefficients for several ions were obtained by the matched potential method with respect VO2+ ions. The flow cell is simple to construct and free from memory effect problems over long periods of use. The sensor was used for the recovery of trace VO2+ ions from tap water and the determination of VO2+ in synthetic sample.  相似文献   

3.
A new surface based on poly(vinylferrocenium) (PVF+)-modified platinum electrode was developed for determination of Hg2+ ions in aqueous solutions. The polymer was electrodeposited on platinum electrode by constant potential electrolysis as PVF+ClO4. Cl ions were then attached to the polymer matrix by anion exchange and the modified electrode was dipped into Hg2+ solution. Hg2+ was preconcentrated at the polymer matrix by adsorption and also complexation reaction with Cl. Detection of Hg2+ was carried out by differential pulse anodic stripping voltammetry (DPASV) after reduction of Hg2+. Mercury ions as low as 5 × 10−10 M could be detected with the prepared electrode and the relative standard deviation was calculated as 6.35% at 1 × 10−6 M concentration (n = 6). Interferences of Ag+, Pb2+ and Fe3+ ions were also studied at two different concentration ratios with respect to Hg2+. The developed electrode was applied to the determination of Hg2+ in water samples.  相似文献   

4.
A PVC membrane electrode for Ni2+ ions based on a recently synthesized mercapto compound, as an ionophore was prepared. The electrode exhibits a Nernstian slope of 28-30 mV per concentration decade at wide concentration range of (1.0×10−2-1.0×10−7 M). It has a fast response time of <15 s and can be used for at least 4 weeks. The potentiometric response is independent of the pH of the test solution in the pH range 5-8.5. The proposed electrode revealed good selectivities over a wide variety of other cations including alkali, alkaline earth, transition and heavy metal ions. It was successfully applied to the direct determination and potentiometric titration of nickel ion with EDTA.  相似文献   

5.
An ion-selective bulk optode (ISBO) for sensing Cu2+ and Pb2+ ions based on plasticized poly(vinyl chloride) containing 1,10-dibenzyl-1,10-diaza-18-crown-6 (DBzDA18C6) as ionophore and 1-(2-pyridylazo)-2-naphthol (PAN) as chromoionophore was prepared. The effects of DBzDA18C6/PAN and NaTPB/PAN mole ratios on the response behavior of the ISBO were investigated. The ISBO membrane shows enhanced selectivities for Cu2+ (at 530 nm) and Pb2+ (at 467 nm) over alkali, alkaline earth and other transition metal ions. The optical selectivity coefficients were measured using the separate solution method (SSM) in the two corresponding wavelengths at pH=5. The detection limit for Cu2+ and Pb2+ are 3.2×10−7 and 1.0×10−8 M, respectively.  相似文献   

6.
Hu C  Wu K  Dai X  Hu S 《Talanta》2003,60(1):17-24
A simple and effective chemically modified carbon paste electrode (CMCPE) for the simultaneous determination of lead(II) and cadmium(II) was developed in this work. The electrode was prepared by the addition of diacetyldioxime into a carbon paste mixture. Pb2+ and Cd2+ were preconcentrated on the surface of the modified electrode by complexing with diacetyldioxime and reduced at a negative potential (−1.10 V). Then the reduced products were oxidized by differential pulse stripping. The fact that two stripping peaks appeared on the voltammograms at the potentials of −0.65 V (Cd2+) and −0.91 V (Pb2+) demonstrates the possibility of simultaneous determination of Pb2+ and Cd2+. Under the optimized working conditions, calibration graphs were linear in the concentration ranges of 1.0×10−7-1.5×10−5 mol l−1 (Pb2+) and 2.5×10−7-2.5×10−5 mol l−1 (Cd2+), respectively. For 5 min preconcentration, detection limits of 1×10−8 mol l−1 (Pb2+) and 4×10−8 mol l−1 (Cd2+) were obtained at the signal noise ratio (SNR) of 3. To evaluate the reproducibility of the newly developed electrode, the measurements of 5×10−7 mol l−1 Pb2+ and Cd2+ were parallel carried out for six times at different electrodes and the relative standard deviations were 2.9% (Pb2+) and 3.2% (Cd2+), respectively. Interferences by some metals were investigated. Only Ni2+ and Hg2+ apparently affected the peak currents of Pb2+ and Cd2+. The diacetyldioxime modified carbon paste electrode was applied to the determination of Pb2+ and Cd2+ in water samples. The results indicate that this electrode is sensitive and effective for the simultaneous determination of Pb2+ and Cd2+.  相似文献   

7.
In this article a new coated platinum Cu2+ ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L1) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10−7-1.0 × 10−1 mol L−1) and a low detection limit of 9.8 × 10−8 mol L−1of Cu(NO3)2. It has a Nernstian response with slope of 29.54 ± 1.62 mV decade−1 and it is applicable in the pH range of 4.0-6.0 without any divergence in potentioal. The coated electrode has a short response time of approximately 9 s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu2+ ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu2+ ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu2+ ion with EDTA.  相似文献   

8.
A PVC-based sensor for La3+ ions based on N-[hexahydrocyclopentapyrol-2((1H)yl)amino]carbonyl]-4-methyl benzene sulfonamide (gliclazide) as a novel carrier was prepared. The electrode exhibits a Nernstian response for La3+ over a wide concentration range (1.0×10−1-1.0×10−6 M) with a slope of 20.1 mV per decade. The limit of detection is 8.0×10−7 M. The sensor has a very short response time (<15 s) and a useful working pH range of 4.0-8.0. The proposed membrane sensor shows excellent discriminating ability towards La3+ ions with regard to several alkali, alkaline earth, transition and heavy metal ions. The electrode was successfully applied for determination of La3+ in binary mixtures.  相似文献   

9.
A novel fluorescence chemical sensor for the highly sensitive and selective determination of Pb2+ ions in aqueous solutions is described. The preliminary potentiometric and spectrofluorimetric complexation studies in solution revealed that the lipophilic ligand 5,8-bis((5′-chloro-8′-hydroxy-7′-quinolinyl)methyl)-2,11-dithia-5,8-diaza-2,6-pyridinophane (L2) forms a highly stable and selective [PbL2]2+ and [Pb(L2)2]2+ complexes which results in a strong fluorescence quenching of the ligand. Thus, a novel fluorescence Pb2+ sensing system was prepared by incorporating L2 as a neutral lead-selective fluoroionophore in the plasticized PVC membrane containing tetrakis(p-chlorophenyl) borate as a liphophilic anionic additive. The response of the sensor is based on the strong selective fluorescence quenching of L2 by Pb2+ ions. At pH 5.5, the proposed sensor displays a calibration curve over a wide concentration range of 3.0 × 10−7 to 2.5 × 10−2 M with a relatively fast response time of less than 5 min. In addition to high stability, reversibility and reproducibility, the sensor shows a unique selectivity towards Pb2+ ion with respect to common coexisting cations. The proposed fluorescence optode was successfully applied to the determination of lead in plastic toys and tap water samples.  相似文献   

10.
Singh AK  Saxena P  Mehtab S  Gupta B 《Talanta》2006,69(2):521-526
A new PVC membrane electrode based on 5,7,12,14-dibenzo-2,3,9,10-tetraoxa-1,4,8,11-tetraazacyclotetradecane (I) as an ion carrier, o-nitrophenyloctyl ether (o-NPOE) as solvent mediator and sodium tetraphenylborate (NaTPB) as lipophilic additive was fabricated and investigated as Sr2+-selective electrode. The best performance was exhibited by the membrane having composition 8:200:4:120 (I:o-NPOE:NaTPB:PVC). The electrode exhibited a Nernstian response for strontium ion over a wide concentration range 3.98 × 10−6 to 1.0 × 10−1 M with a slope of 29.0 ± 0.1 mV/decade of concentration and a detection limit of 2.82 × 10−6 M. It showed a response time of less than 10 s and could be used for at least 3 months without any divergence in potential. The proposed electrode showed a good discriminating ability towards strontium(II) ion over a wide variety of other metal ions including alkali, alkaline earth, transition, and heavy metal ions. The electrode can be used in the pH range of 2.5-10.5 and in mixtures containing up to 35% (v/v) non-aqueous content. It was used as an indicator electrode in potentiometric titration of strontium ion against EDTA.  相似文献   

11.
Mahajan RK  Kaur I  Lobana TS 《Talanta》2003,59(1):101-105
A new ion-selective PVC membrane electrode based on salicylaldehyde thiosemicarbazone as an ionophore is developed successfully as sensor for mercury(II) ions. The electrode shows excellent potentiometric response characteristics and displays a linear log[Hg2+] versus EMF response over a wide concentration range of 1.778×10−6-1.0×10−1 M with Nernstian slope of 29 mV per decade with the detection limit of 1.0×10−6 M. The response time of the electrode is less than 30 s and the membrane electrode operates well in the pH range of 1.0-3.0. The lifetime of the sensor is about 2 months. The electrode shows better selectivity towards Hg2+ ions in comparison with the alkali, alkaline and some heavy metal ions; most of these metal ions do not show significant interference (KPotHg,M values of the order of 10−3-10−4). The present sensor showed comparable or even better performance vis-à-vis similar PVC based ion-selective electrodes reported in literature. The sensor was also applied as an indicator electrode for potentiometric titration of Hg2+ions with I and Cr2O72−.  相似文献   

12.
This study presents the development of an original electrode, employing 6-methy-4-{[1-(1H-pyrrol-2-yl)methylidene]amino}-3-thioxo-3,4dihydro-1,2,4-triazin-5(2H)-one (PMTO) as a suitable ionophore. Interestingly, the electrode performance provided a very good response for Yb3+ in a wide concentration range (from 1.0 × 10−6 to 1.0 × 10−1 mol L−1) with a detection limit of 4.6 × 10−7 mol L−1 and a slope of 19.5 ± 0.3 mV per decade of Yb3+ concentration. Furthermore, it possessed a fast response time of about 10 s and it functioned in the pH range of 3.3-8.0 with a usage of at least 2 months without observing any deviations. Noticeably, the proposed electrode revealed an excellent selectivity for Yb3+ over a broad variety of alkali, alkaline earth, transition and heavy metal ions. The practical applicability of the electrode was demonstrated by its utilization as an indicator electrode in the potentiometric titration of Yb3+ ions with EDTA and in the determination of F in mouth wash samples. Additionally, it was also applied for the determination of Yb3+ ions in binary mixtures.  相似文献   

13.
A plasticized poly (vinyl chloride) membrane electrode based on 1,3-bis(2-cyanobenzene)triazene (CBT) for highly selective determination of platinum(II) (in PtCl42− form) is developed. The electrode showed a good Nernstian response (29.8 ± 0.3 mV decade−1) over a wide concentration range (1.0 × 10−6 to 1.0 × 10−2 mol L−1). The limit of detection was 5.0 × 10−7 mol L−1. The electrode has a response time of about 40 s, and it can be used for at least 1 month without observing any considerable deviation from Nernstian response. The proposed electrode revealed an excellent selectivity toward platinum(II) ion over a wide variety of alkali, alkaline earth, transition, and heavy metal ions, and it could be used in the pH range of 3.2-5.1. The practical utility of the electrode has been demonstrated by its use in determination of platinum ion in, alloy, tap, mineral and river water samples.  相似文献   

14.
《Analytical letters》2012,45(1):17-28
ABSTRACT

A PVC membrane electrode for Pb2 ions based on tetraphenylporphyrin was prepared. The sensor exhibits a Nernstian response for lead ions over a wide concentration range (1.0 x 10?5-1.0 x 10?2 M). The limit of detection is 8.5 x 10?6M. It has a response time of 15 s and can be used for at least three months without any divergence in potential. The proposed electrode shows a fairly good discriminating ability towards Pb2 ion in comparison to some alkali, alkaline earth, transition and heavy metal ions. The electrode can be used in the pH range 5.0 to 7.5. It was used as an indicator electrode in potentiometric titration of lead ion.  相似文献   

15.
Lu J  He X  Zeng X  Wan Q  Zhang Z 《Talanta》2003,59(3):553-560
A novel calix[4]arene derivative containing benzothiazole group was coated on glassy carbon electrode (GCE) and then applied to the recognition of mercury ion. Cyclic and square wave voltammetric results showed that the modified electrode selectively recognizes Hg2+ ion in aqueous media. A new anodic stripping peak at −0.3 V (vs. Ag/Ag+) can be obtained by scanning the potential from −0.6 to 0.6 V, and the peak currents are proportional to the Hg2+ concentration. The modified electrode in a 0.1 M H2SO4+0.01 M NaCl solution shows linear voltammetric response in the range of 25-300 μg l−1 and detection limit of 5 μg l−1 (ca. 2.5×10−8 M). This modified GCE does not present any significant interference from alkali, alkaline and transition metal ions except for Pb2+, Ag+ and Cu2+ ions. Only 500, 50 and 100-fold molar excess of Pb2+, Ag+ and Cu2+ ions, respectively, can lead to voltammetric response comparable with that of Hg2+. The proposed method was successfully applied to determine mercury in natural water.  相似文献   

16.
A disposable screen-printed electrode was designed and evaluated for direct detection of chromium(VI) in batch and flow analysis. The carbon screen-printed electrode was modified with a graphite–epoxy composite. The optimal graphite–epoxy matrix contains 37.5% graphite powder, 12.5% diphenylcarbohydrazide, a selective compound for chromium(VI), and 50% epoxy resin. The principal analytical parameters of the potentiometric response in batch and flow analysis were optimized and calculated. The screen-printed sensor exhibits a response time of 20 ± 1 s. In flow analysis, the analytical frequency of sampling is 70 injections per hour using 0.1 M NaNO3 solution at pH 3 as the carrier, a flow rate of 2.5 mL·min−1, and an injection sample volume of 0.50 mL. The sensor shows potentiometric responses that are very selective for chromium(VI) ions and optimal detection limits in both static mode (2.1 × 10−7 M) and online analysis (9.4 × 10−7 M). The disposable potentiometric sensor was employed to determine toxicity levels of chromium(VI) in mineral, tap, and river waters by flow-injection potentiometry and batch potentiometry. Chromium(VI) determination was also carried out with successful results in leachates from municipal solid waste landfills.  相似文献   

17.
Ion-selective electrode (ISE) was designed by dispersing the dysprosium(III) IIP particles in 2-nitrophenyloctyl ether plasticizer and then embedded in polyvinyl chloride matrix. The ISE shows a Nernstian response for dysprosium(III) over a wide concentration range (8.0 × 10−6 to 1.0 × 10−1 M) with a slope of 21.7 mV per decade. The limit of detection was 2 × 10−6 M. This sensor has a very fast response time (∼10 s) and offers high selectivity compared to conventional chemical sensors towards dysprosium(III) with respect to several alkali, alkaline earth and transition metal ions as the selectivity is 10-100-fold better. The sensor was used for determination of dysprosium(III) ions by potentiometric (EDTA) titration and has been successfully demonstrated for the determination of fluoride in mouth wash solution.  相似文献   

18.
Kim S  Kim H  Noh KH  Lee SH  Kim SK  Kim JS 《Talanta》2003,61(5):709-716
A series of 1,3-alternate calix[4]azacrown ethers for which the monoaza and unsymmetrical crowned-azacrown with different side arms were examined as an ionophore for ion-selective polymeric membrane electrode toward potassium ion. Among them, the electrode based on calix[4]crown-5-azacrown-5 with a phenyl group exhibited near Nernstian response for K+ ions over a wide concentration range (1×10−5 to 1×10−1 M) with a limit of detection of 2×10−6 M. It has a fast response time of approximately 2-3 s and can be used for at least 2 months without observing any major deterioration. Selectivity coefficients indicated that interference from all common alkali, alkaline and transition metal ions was very small.  相似文献   

19.
A sensitive and highly selective spectrophotometric method is described for the determination of cyanide. It is based on a reaction of cyanide with aquacyanocobyrinic acid heptamethyl ester (ACCbs) reagent (orange color) at pH 9.5 to give dicyanocobester (DCCbs) (violet color). The increase of the absorption bands of the reaction product at 368 and 580 nm and the decrease of the reagent band at 353 nm are linearly proportional to the cyanide concentration. The method is used in static mode for determining cyanide over the concentration range 0.04-1.20 μg ml−1 with a detection limit of 0.02 μg ml−1 and for hydrodynamic analysis of 0.4-5.2 μg ml−1 cyanide. Application for batch and flow injection monitoring of cyanide in electroplating wastewater samples gives results agree within ± 1.2% with those obtained by the standard potentiometry using the cyanide ion selective electrode. The method is practically free from interferences by PO43−, NO3, NO2, SO42−, F, Cl, Br, I, S2− and SCN ions and gives results with average recoveries of 97.6-99.2%. Advantages offered by using ACCbs as a chromogen for cyanide assay are: (i) high selectivity and sensitivity of the coordination site of the reagent towards cyanide ion; (ii) fast reaction, since legation takes place at the axial position of the reagent; (iii) good solubility and stability of the reagent in aqueous solutions over a wide pH range; (iv) high stability of the reagent (ACCbs) and the colored complex product (DCCbs) and (v) possible absorbance measurements at three different wavelengths.  相似文献   

20.
A new PVC membrane electrode for Co2+ based on N,N′-bis(salicylidene)-3,4-diaminotoluene, an excellent neutral carrier, has been fabricated using sodium tetraphenylborate (NaTPB) as an anionic excluder and dioctylphthalte (DOP) as a solvent mediator. The electrode exhibits a linear potential response in the concentration range of 7.9 × 10−8 to 1.0 × 10−1 M with a slope of 30 ± 0.2 mV per decade. The detection limit of the proposed sensor is 5.0 × 10−8 M and it can be used over a period of 5 months. The proposed sensor revealed good selectivity over a wide variety of other cations including alkali, alkaline earth, heavy and transition metals and could be used in the pH range of 2.0-9.0. This electrode was successfully applied for the determination of Co2+in real samples and as an indicator electrode in potentiometric titration of cobalt ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号