首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Milk samples can be efficiently digested using a focused microwave oven, however the conventional procedure of addition of concentrated acids to the liquid sample leads to digestates with elevated acidity and residual carbon concentrations. In this work a focused microwave oven was applied for acid digestion of bovine milk samples using a conventional and an alternative procedure based on gradual sample addition to hot and concentrated acids. A two-level 23 full factorial design experiment with eight runs was carried out to evaluate the optimum experimental conditions for reducing both the residual carbon and the final acidity of digestates. The three studied parameters were: temperature of the digestion medium for sample addition, addition of sulfuric acid before the sample or during the first step, and number of aliquots of the sample gradually added. The best conditions were attained by adding small aliquots of milk (ten-fold a volume of 0.5 ml added during 5.0 min) to a digestion mixture containing 3.0 ml nitric acid plus 1.0 ml sulfuric acid heated at 105 °C. It was demonstrated that the digestion efficiency of the alternative procedure was better than the conventional procedure, i.e. 98 and 80%, respectively. The alternative procedure was applied for determination of Ba, Ca, Cu, K, Mg, Na, P, and Zn in whole and non-fat bovine milk. The accuracy was proved using two certified reference materials (whole and non-fat milk powder).  相似文献   

2.
Araújo GC  Nogueira AR  Nóbrega JA 《The Analyst》2000,125(10):1861-1864
A single vessel procedure using a focused microwave oven is proposed for biological sample preparation with nitric acid vapour under atmospheric pressure. A laboratory-made PTFE support vessel equipped with four cups that received the samples was adapted to fit on the microwave glass vessel. Biological samples (30 mg) were directly weighed into these PTFE cups followed by the addition of 150 microliters of water or H2O2. The mixture was exposed to acid vapour stemming from 15 ml of concentrated HNO3 placed in the bottom of the glass vessel. The acid vapour was formed at 115 degrees C and brought about the Co and Fe extraction in 10 and 60 min, respectively. The resulting suspension was diluted with 0.14 mol l-1 HNO3 to a final volume of 1.0 ml, shaken and centrifuged. The supernatant was analysed by electrothermal atomic absorption spectrometry (ETAAS) by placing the cups directly in the autosampler of the spectrometer. This system minimised contamination, and reagent and time consumption and was suitable for Co and Fe determination in biological materials. The accuracy of the proposed method was assessed by using certified reference materials and by comparison with the closed vessel microwave as a comparative technique. Cobalt and Fe recovery was around 82-99%. As an additional advantage, up to 6 samples can be simultaneously prepared in each vessel, thereby improving the sample throughput from 6 to 24, when a 6-cavity focused microwave is used.  相似文献   

3.
In the present paper a focused-microwave Kjeldahl digestion procedure without metal catalyst for nitrogen determination in bean samples was developed. Temperature at which the decomposition plateau occurs, mass of potassium sulphate and either volume of sulphuric acid or hydrogen peroxide were optimised. Results of the two-level full factorial design (24) based on an analysis of variance demonstrated that only the decomposition plateau temperature and the sulphuric acid volume were statistically significant. Optimal conditions for the digestion of bean samples were obtained by using Doehlert design. The modified digestion procedure of 0.25 g of bean samples has been performed in 27 min at optimised conditions. The accuracy of the developed procedure by the analysis of the two certified reference materials, peach leaves (NIST 1547) and apple leaves (NIST 1515). The t-test applied to the results revealed that they are in agreement (p > 0.05) with the certified values. The precision, expressed as relative standard deviation (R.S.D.) was of 0.96% for four successive Kjeldahl nitrogen determinations. In addition, interlaboratory exercises were performed with several bean samples in reference Brazilian food control laboratory.  相似文献   

4.
Two digestion procedures have been tested on nut samples for application in the determination of essential (Cr, Cu, Fe, Mg, Mn, Zn) and non-essential (Al, Ba, Cd, Pb) elements by inductively coupled plasma-optical emission spectrometry (ICP-OES). These included wet digestions with HNO3/H2SO4 and HNO3/H2SO4/H2O2. The later one is recommended for better analytes recoveries (relative error < 11%). Two calibrations (aqueous standard and standard addition) procedures were studied and proved that standard addition was preferable for all analytes. Experimental designs for seven factors (HNO3, H2SO4 and H2O2 volumes, digestion time, pre-digestion time, temperature of the hot plate and sample weight) were used for optimization of sample digestion procedures. For this purpose Plackett-Burman fractional factorial design, which involve eight experiments was adopted. The factors HNO3 and H2O2 volume, and the digestion time were found to be the most important parameters. The instrumental conditions were also optimized (using peanut matrix rather than aqueous standard solutions) considering radio-frequency (rf) incident power, nebulizer argon gas flow rate and sample uptake flow rate. The analytical performance, such as limits of detection (LOD < 0.74 μg g−1), precision of the overall procedures (relative standard deviation between 2.0 and 8.2%) and accuracy (relative errors between 0.4 and 11%) were assessed statistically to evaluate the developed analytical procedures. The good agreement between measured and certified values for all analytes (relative error <11%) with respect to IAEA-331 (spinach leaves) and IAEA-359 (cabbage) indicates that the developed analytical method is well suited for further studies on the fate of major elements in nuts and possibly similar matrices.  相似文献   

5.
乌兰茶晶石属于富含稀土型矿物,能准确监测乌兰茶晶石中的稀土元素具有非常重要的意义。本文通过15组微波消解试剂条件实验及对超级微波消解仪工作参数的优化,最终确定采用硝酸-氟硼酸-磷酸体系在超级微波消解仪中260℃下加热30分钟进行样品消解,赶酸后用2%硝酸复溶, 建立了超级微波消解-电感耦合等离子体发射光谱法(ICP-OES)测定乌兰茶晶石中15种稀土元素的方法,整个过程高效、操作简便、无损失、无污染。利用ICP-OES进行测定,所选谱线无干扰、信背比高,校准曲线线性相关系数大于0.99995,测试结果准确,精密度<4.0%,加标回收率在91.3%-96.3%之间。该方法用于花岗岩(GBW07103)测试,测定值与标准值一致。结果表明,硝酸-氟硼酸-磷酸消解法磷酸法可替代碱溶法对乌兰茶晶石实际样品进行前处理,具有较好的稳定性和准确性,能满足实际应用需求。  相似文献   

6.
Kagaya S  Kuroda Y  Serikawa Y  Hasegawa K 《Talanta》2004,64(2):554-557
Addition of a sodium hypochlorite solution (9.2% (w/v)) was effective to reduce a sulfide interference in determination of organic mercury, including methylmercury and phenylmercury, as well as a previously reported determination of inorganic mercury by cold vapor atomic absorption spectrometry (CVAAS) in an alkaline medium. Total mercury ranging from 0.17 to 33 μg L−1 in 15 mL of sample solutions containing up to 200 mg L−1 of sulfide can be determined without any serious interference by sulfide when 1 mL of the sodium hypochlorite solution was added after dilution of the sample solution to 25 mL. The proposed method was simple and rapid because no digestion processes were required for the determination of total mercury; the time required for the determination was only about 5 min. The proposed method was applicable to the analysis of treated waste water.  相似文献   

7.
在利用氢化物发生-原子荧光分测定谷物类样品中砷元素时,硫脲-抗坏血酸的还原效果会受到硝酸含量的影响,试液中硝酸含量过高,会与硫脲-抗坏血酸溶液发生氧化还原反应,降低其还原效率。本研究通过对赶酸时间和赶酸温度进行试验,获得最佳的赶酸条件,结合微波消解技术,利用氢化物发生-原子荧光光谱法测定谷物中的微量砷,结果表明,谷物中砷浓度与荧光强度呈线性关系,线性方程为 y=0.0028x-0.1728,线性相关系数R2=0.9993,检出限为1.72ng/g。 通过对9份样品进行检测,其相对标准偏差RSD在4.32-7.59%之间,其准确度相对误差RE均小于±6.50%。经多次检测证实该方法较稳定,可用于谷物类样品中砷元素的快速测定。  相似文献   

8.
The teflon-lined bomb described is suitable for acid digestion of biological materials. Total decomposition time with nitric and perchloric acids is 6 h. Blanks are low and results agree well with certified values.  相似文献   

9.
A microwave digestion method for the determination of marine biological tissues has been developed to allow determination of selenium in small sample sizes (< 0.1 g). The benefits of this technique include maintaining concentrates in extracts without the subsequent over dilution encountered when using larger vessels, increased sample throughput and reduced loss of volatile material. Freeze dried biological material (< 0.1 g) and nitric acid (1 ml) were placed into 7 ml screw top Teflon vessels which are completely sealed on capping. Two 7 ml vials were placed into larger 120 ml vessels fitted with a Teflon spacer and 10 ml of distilled water. The effects of microwave power and time, and sample mass on selenium recovery from three marine standard reference materials (NIST SRM 1566a Oyster Tissue, NRCC DORM-1 Dogfish Muscle and NRCC TORT-1 Lobster Hepatopancreas) were examined. The optimum conditions: 600 W, 2 min; 0 W, 2 min; 450 W, 45 min, allowed quantitative recoveries of selenium from these and three other standard reference materials (NRCC DOLT-1 Dogfish liver, NIST RM-50 Albacore tuna and IAEA MA-A-2 fish flesh). Studies on sample mass showed that the analysis of sample masses from 0.025 to 0.1 g gave selenium concentrations within the certified range. Six species of selenium: selenite, selenate, selenomethionine, selenocysteine, selenocystamine, and trimethyl selenonium were added to oyster, dogfish, and lobster tissues. Recoveries were near quantitative for all species (94–105%) except trimethyl selenonium (90–101%).  相似文献   

10.
A simple and reliable multi-element procedure for determination of essential (Cr, Cu, Fe, Mg, Mn, Zn) and toxic (Al, Cd, Pb) elements in legumes by inductively coupled plasma-optical emission spectrometry (ICP-OES) was developed. In this contribution, four different digestion procedures were thoroughly investigated and accurately evaluated with respect to their affect on the analysis of legumes. These included wet digestion with HNO3/H2SO4 and HNO3/H2SO4/H2O2, and dry ashing with Mg(NO3)2 and Mg(NO3)2/HNO3. Two calibrations (aqueous standard and standard addition) procedures were studied, and proved that standard addition was preferable for all analytes. ICP-OES operating parameters, such as radio-frequency (RF) incident power, sample uptake flow rate and nebulizer argon gas flow rate were optimized. The precision as repeatability, expressed as relative standard deviation (R.S.D.) for aqueous standard containing 250 μg l−1 of each analyte was in the range1.5-8.0%. The accuracy, expressed as relative error was generally varied in the range of 0.5-10% for all analytes, while the quantification limits were lower than 2.5 μg g−1. Although, acceptable results were obtained from all developed procedures, wet digestion method with HNO3/H2SO4/H2O2 is recommended for better recovery. The good agreement between measured and certified concentrations with respect to IAEA-331 and IAEA-359 (CRM's supplied by IAEA, International Atomic Energy Agency) indicates that the developed analytical method is well suited for determination of toxic and nutrient elements in legumes and possibly similar matrices.  相似文献   

11.
微波消解-GFAAS测定浅水湖泊底泥中重金属元素   总被引:1,自引:0,他引:1  
探讨了采用微波消解作为底泥样品的前处理方法,运用石墨炉原子吸收法测定浅水湖泊底泥中Cu,Pb,Zn,Cd,Cr含量的实验条件.方法的RSD为2.0%~4.1%,平均回收率为97.4%~101.5%,Cu,Pb,Zn,Cd,Cr的检出限分别为0.4,5,2.8,0.25,2.5ng.该法适合于浅水湖泊底泥中重金属含量的测定.  相似文献   

12.
A closed microwave digestion method followed by inductively coupled plasma spectrometric (ICP-MS) analysis was evaluated for the determination of trace impurities in photoresist. To optimize the digestion procedure, several digestion parameters such as acid, heating temperature and heating time were evaluated. Besides, the digestion efficiency of used photoresist material and the recovery of analyte elements obtained by the use of gravimetric method and ICP-MS measurement, individually, were also compared to clarify the completeness of digestion. According to our experiments, the gravimetric method was found to be not so relevant to the completeness of digestion, because the remaining sample matrix could cause suppression effect in the subsequent ICP-MS measurement. In view of minimizing blank value and working time, a simple single-step heating program was proposed to mineralize 0.25 ml of photoresist material with 5 ml of nitric acid at 180 °C for 10 min. Based on the comparative study of the analytical results obtained by instrumental neutron activation analysis (INAA) and proposed method, the reliability of proposed method for the determination of trace metallic impurities in photoresist material has been confirmed.  相似文献   

13.
Wang J  Nakazato T  Sakanishi K  Yamada O  Tao H  Saito I 《Talanta》2006,68(5):1584-1590
A microwave digestion method with HNO3 alone was conducted at a temperature as high as 250 °C for determination of 19 trace elements (Li, Be, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Cd, Cs, Ba, Hg, and Pb) in coal jointly by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and flow injection ICP-MS (FI-ICP-MS). The validity of determination was assessed by using three standard coals, SRM 1632c, BCR 180, and SARM 19. It was found that the high-temperature digestion led to an extensive decomposition of the organic matrix and clay in coal, and no dissolved and solid carbon remained in the final solution after evaporation. Good recoveries were observed for all trace elements in three coals, with the exception of V, Rb, and Cs in high-ash SARM 19. Additionally, FI-ICP-MS combined with the present digestion without evaporation pretreatment was proved to be a rapid and efficient approach for determination of ultra-trace elements such as Se, Cd, and Hg in coal.  相似文献   

14.
In the present paper, we have synthesized a biomorphic ceramic material from oak wood as biological template structure and infiltration with zirconia-sol. After the material characterization, we have optimized the sample dissolution by acid attack in an oven under microwave irradiation. Experimental designs were used as a multivariate strategy for the effect's evaluation of varying several variables. This article describes the development by response surface methodology (RSM) of a procedure for zirconium determination, and other ions, such as copper and nickel by inductively coupled plasma mass spectrometry (ICP-MS) and others, such as iron, calcium and magnesium determination by flame atomic absorption spectrometry (FAAS) in the synthesized sample after digestion. A full factorial design (33) was used to find optimal conditions for the procedure through response surface study. Three variables (time, HNO3 volume and HF volume) were regarded as factors and as response to the concentration of different metal ions in the optimization study.  相似文献   

15.
Pettersson J  Hansson L  Olin A 《Talanta》1986,33(3):249-254
A flow system for hydride generation and atomic-absorption spectrometry is described, and the results from the optimization of the equipment for selenium determination are reported. For a sample volume of 0.6 ml the limit of detection for selenium was 0.1 mug l . and the imprecision less than 1% RSD at the 10-mug l . level. Four digestion procedures for selenium in bovine liver have been tested. All procedures gave concordant results, provided that the standard-additions method was used. The accuracies of the overall analytical procedures were estimated by comparison with results from neutron-activation analysis and analysis of NBS Bovine Liver, No. 1577. These comparisons proved that the accuracies of the procedures described in this paper are good.  相似文献   

16.
When high mineral loads in atmospheric particulate matter (PM) are present, particular attention should be paid to the selection of appropriate acidic digestion protocols for wet chemical analysis. We report on a comparative study of elemental recovery yields from five different pre-analytical acid digestion procedures for mineral-rich urban background PM10 samples collected in the city of Constantine (Northeastern Algeria). Five reference materials (NIST 1633b, UPM 1648, NAT-7, SO-2 and SO-4) were also digested according to the same protocols. The selected acidic digestion/extraction procedures are widely used for PM chemical analysis and comprise P1 (HNO3/HF/HCl), P2 (HCl/HNO3), P3 (HCl/H2O2/HNO3), P4 (HNO3/HF/HClO4) and P5 (HNO3/H2O2); the latter assisted with microwave digestion. Elemental recovery yields were compared for major and trace elements typically determined in PM for source apportionment analysis and the results evidenced large differences. For most elements, the bulk extraction procedures (requiring the use of HF) allowed a full elemental recovery, particularly for elements that are associated with aluminium silicate species and oxides that are resistant to mild acid attack. In contrast, in the extraction protocols without HF low recovery yields were obtained for elements such as Al, Ti, Zr, Sc and other aluminium silicate-related elements in PM10 samples with high mineral dust load. We highlight that the European standard digestion method EN-14902:2005 should be applied specifically for the metals for which this method was developed, but caution should be taken when the analysis of other elements in PM is required, especially in urban areas where road and vehicle wear dust is likely to be a major component of ambient PM. When using wet chemistry analysis for PM source apportionment studies, we strongly recommend HF bulk dissolution of samples to ensure the reliability of the geochemical information when coupled with an appropriate analytical tool.  相似文献   

17.
This article describes the development by response surface methodology (RSM) of a procedure for iron, zinc and manganese determination by flame atomic absorption spectrometry (FAAS) in food samples after digestion employing a focussed microwave system. A Doehlert matrix was used to find optimal conditions for the procedure through response surface study. Three variables (irradiation power and time and composition of oxidant solution—HNO3 + H2O2) were regarded as factors in the optimization study. The working conditions were established as a compromise between optimum values found for each analyte taking into consideration the robustness of the procedure. These values were 12 min, 260 W and 42% (v/v) for irradiation time, irradiation power and percent of H2O2 in solution, respectively. The accuracy of the optimized procedure was evaluated by analysis of certified reference materials and by comparison with a well-established closed vessel microwave dissolution methodology.  相似文献   

18.
Summary A monolithic ODS-silica gel column modified by saturating it with lithium dodecylsulfate (Li-DS) was firstly used to separate monovalent cations simultaneously including H+, Na+, NH4 + and K+ by ion-chromatography (IC). Using an acidified 60 mM LiCl solution (pH 3.95, containing 0.10 mM Li-DS) as eluent, these monovalent cations were separated well in the order of Na+<NH4 +<K+<H+ within 3 min at a flow rate of 2.0 mL min−1. The detection limits of these cations by this method with conductivity detection were 20.0 μM for Na+, 12.0 μM for NH4 +, 9.84 μM for K+ and 6.20 μM for H+. Acid rain water samples with a pH value less than 5.00 could be analyzed directly with this IC system.  相似文献   

19.
A sensitive multi-residue analytical method was developed for the determination of ten quinolones: enoxacin, ofloxacin, norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, sarafloxacin, oxolinic acid, nalidixic acid, and flumequine in bovine liver and porcine kidney. A simple liquid extraction step followed by a solid phase extraction clean up procedure was applied for the extraction of quinolones from liver and kidney tissues. Recoveries of the extraction varied between 82 and 88% for bovine liver and 92 and 95% for porcine kidney. Separation was performed on an ODS-3 PerfectSil Target (250 x 4 mm) 5 microm analytical column at 25 degrees C. The mobile phase consisted of a mixture of TFA 0.1%-CH(3)CN-CH(3)OH, delivered at a flow rate of 1.2 mL/min according to a gradient program. Elution of quinolones and the internal standard (caffeine, 7.5 ng/microL) was complete within 27 min. Photodiode array detection was used for monitoring the eluants at 275 and 255 nm. The method was fully validated according to the European Union Decision 2002/657/EC, determining linearity, selectivity, decision limit, detection capability, accuracy, and precision. The LODs of the specific method of quinolone determination in bovine liver varied between 3 and 7 microg/kg and in porcine kidney between 3 and 4 microg/kg.  相似文献   

20.
The evaluation of the use of alkaline peroxodisulfate digestion with low pressure microwave, autoclave or hot water bath heating for the determination of total phosphorus and nitrogen in turbid lake and river waters is described. The efficiency of these digestion procedures were compared to a Kjeldahl digestion procedure with sulphuric acid-potassium sulfate and copper sulfate. The final solution before digestion was 0.045 M in potassium peroxodisulfate and 0.04 M in sodium hydroxide. Procedures were evaluated by the analysis of suspensions of two reference materials, National Institute of Environmental Science, Japan, no. 3 Chlorella and no. 2 pond sediment and natural turbid waters. Best recoveries of phosphorus and nitrogen by microwave heating were obtained when solutions were digested at 95 °C for 40 min. Quantitative recoveries of phosphorus from Chlorella suspensions up to 1000 mg/l were obtained by all three heating procedures, but incomplete recoveries of nitrogen occurred above 20 mg N/l in the digested sample. Good recoveries of phosphorus and nitrogen from suspended sediment suspensions were obtained only from solutions containing <150 mg/l of suspended sediments. Recoveries of phosphorus from phosphorus compounds containing COP and CP bonds added to distilled water were quantitative (94-113%) except for polyphosphates (microwave, 34±8; autoclave, 114±6; water bath, 96±4) and aluminium phosphate (8-23%). Recoveries of nitrogen compounds containing CN bonds added to distilled water were quantitative (94-96%). The analysis of a range of natural turbid water samples by alkaline peroxodisulfate and microwave, autoclave and water bath heating gave similar total phosphorus and nitrogen results. All procedures using alkaline peroxodisulfate underestimate phosphorus concentrations at high suspended sediment concentrations (>150 mg/l) and are only suitable for the analysis of very turbid samples when the turbidity is due to organic matter (algal cells, plant detritus). Underestimation of nitrogen occurs when samples contain more than 20 mg N/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号