首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three enantioselective, potentiometric membrane electrodes (EPMEs) based on macrocyclic glycopeptide antibiotics—vancomycin and teicoplanin (modified or not with acetonitrile)—were proposed for the determination of l- and d-enantiomers of methotrexate (Mtx). The linear concentration ranges for the proposed enantioselective membrane electrodes were between 10−6 and 10−3 mol l−1 for l- and d- methotrexate. The slopes of the electrodes were 58.00 mV/pl-Mtx for vancomycin-based electrode; 57.60 mV/pd-Mtx for teicoplanin-based electrode and 55.40 mV/pd-Mtx for teicoplanin modified with acetonitrile-based electrode. The detection limits of the proposed electrodes were of 10−8 mol l−1 magnitude order. The surfaces of the electrodes are stable and easily renewable by polishing on alumina paper. All proposed electrodes proved to be successful for the determination of the enantiopurity of Mtx as raw material and of its pharmaceutical formulations (tablets and injections).  相似文献   

2.
In order to determine the enantiopurity of l-carnitine three enantioselective, potentiometric membrane electrodes were proposed for the assay of l-carnitine. The electrodes were designed using macrocyclic glycopeptide antibiotics—vancomycin and teicoplanin. Acetonitrile was added to the teicoplanine to design a modified teicoplanine based electrode. The linear concentration ranges for the proposed enantioselective membrane electrodes were 10−4 to 10−2 mol l−1 for electrodes based on vancomycin and teicoplanin and 10−5 to 10−2 mol l−1 for electrode based on teicoplanin modified with acetonitrile. The slopes of the electrodes were 56.5 mV per pl-carnitine; 54.5 mV per pl-carnitine and 58.3 mV per pl-carnitine for vancomycin-, teicoplanin- and teicoplanin modified with acetonitrile-based electrodes, respectively. The enantioselectivity was determined over d-carnitine. The proposed electrodes could be employed reliably for the assay of l-carnitine raw material and its pharmaceutical formulation, Carnilean® capsules. The surfaces of the electrodes are stable and easily renewable by polishing on alumina paper.  相似文献   

3.
Quantitative assay of l-2-hydroxyglutaric acid (l-2-HGA) is important for the diagnosis of l-2-hydroxyglutaric aciduria. Three enantioselective, potentiometric membrane electrodes (EPMEs) based on maltodextrins with different dextrose equivalent (DE) (DE: 4.0-7.0 (I), 13.0-17.0 (II), 16.5-19.5 (III)), were designed for the enantioanalysis of l-2-HGA. The enantioselective, potentiometric membrane electrodes can be used reliably for enantiopurity assay of l-2-HGA using the direct potentiometric method in the ranges of 10−9-10−5, 10−6-10−3 and 10−8-10−5 mol L−1 for the enantioselective, potentiometric membrane electrodes based on maltodextrins I, II and III, respectively, with very low detection limits. A high reliability was obtained when the electrodes were used for the assay of l-2-HGA in urine samples.  相似文献   

4.
A sensor based on glassy carbon (GC) electrode modified with cobalt tetrasulfonated phthalocyanine (CoTSPc) and a poly-l-lysine (PLL) film is proposed for diospyrin determination in nanomolar concentrations with differential pulse voltammetry (DPV) technique. The modified electrode showed excellent catalytic activity presenting much higher peak currents than those measured on a bare GC electrode. Linear response range, sensitivity and limit of detection (LOD) were of 1-120 nmol l−1, 220.46 nA l nmol−1 cm−2 and 0.3 nmol l−1, respectively. The repeatability of the proposed sensor, evaluated in term of relative standard deviation (R.S.D.), was measured as 4.4% for 10 experiments in 50 μmol l−1 diospyrin samples. The developed sensor was applied for the determination of diospyrin in the crude extracts of the stem-bark of Diospyros montana Roxb. and the average recovery for these samples was 101.9 (±3.1)%.  相似文献   

5.
Tsukatani T  Matsumoto K 《Talanta》2005,65(2):396-401
A method for the sequential enantiomeric quantification of d-malate and l-malate by a single line flow-injection analysis was developed using immobilized-enzyme reactors and fluorescence detection. An immobilized d-malate dehydrogenase (d-MDH) reactor and an immobilized l-malate dehydrogenase (l-MDH) reactor were introduced into the flow line in series. Sample and coenzyme (NAD+ or NADP+) were injected into the flow line by an open sandwich method. d-Malate was selectively oxidized by d-MDH when NAD+ was injected with a sample. When NADP+ was injected with a sample, l-malate was oxidized only by l-MDH. NADH or NADPH produced by the immobilized-enzyme reactors was monitored fluorometrically at 455 nm (excitation at 340 nm). Linear relationships between the responses and concentrations of d-malate and l-malate were observed in the ranges of 1 × 10−6-1 × 10−4 M and 1 × 10−6-2 × 10−4 M, respectively. The relative standard deviations for ten successive injections were less than 2% at the 0.1 mM level. This analytical method was applied to the sequential quantification of d-malate and l-malate in fruit juices and soft drinks, and the results showed good agreement with those obtained using conventional method (F-kit method).  相似文献   

6.
We are proposing for the first time the use of a Nafion/multi-walled carbon nanotubes dispersion deposited on glassy carbon electrodes (GCE) as a new platform for developing enzymatic biosensors based on the self-assembling of a chitosan derivative and different oxidases. The electrodes are obtained by deposition of a layer of Nafion/multi-wall carbon nanotubes dispersion on glassy carbon electrodes, followed by the adsorption of a chitosan derivative as polycation and glucose oxidase, l-aminoacid oxidase or polyphenol oxidase, as polyanions and biorecognition elements. The optimum configuration for glucose biosensors has allowed a highly sensitive (sensitivity = (0.28 ± 0.02) μA mM−1, r = 0.997), fast (4 s in reaching the maximum response), and highly selective (0% interference of ascorbic acid and uric acid at maximum physiological levels) glucose quantification at 0.700 V with detection and quantification limits of 0.035 and 0.107 mM, respectively. The repetitivity for 10 measurements was 5.5%, while the reproducibility was 8.4% for eight electrodes. The potentiality of the new platform was clearly demonstrated by using the carbon nanotubes/Nafion layer as a platform for the self-assembling of l-aminoacid oxidase and polyphenol oxidase. Therefore, the platform we are proposing here, that combines the advantages of nanostructured materials with those of the layer-by-layer self-assembling of polyelectrolytes, opens the doors to new and exciting possibilities for the development of enzymatic and affinity biosensors using different transdution modes.  相似文献   

7.
A highly sensitive flow-injection (FI) method with chemiluminescence (CL) detection is used for the determination of l-ascorbic acid. The method is based on the CL reaction of Rhodamine B with cerium(IV) in sulfuric acid media. l-Ascorbic acid is suggested to be a catalyst utilized in the energy-transferred excitation process. The proposed procedure allows quantitation of l-ascorbic acid in the range 3.8×10−13 to 1.0×10−10 mol l−1 with a correlation coefficient of 0.9998 (n=5) and relative standard deviation (R.S.D.) of 0.92% (n=11) at 1.0×10−11 mol l−1. The detection limit (3×blank) was 1.0×10−13 mol l−1. The method is successfully used to determine l-ascorbic acid in fresh vegetables. The possible mechanism of the chemiluminescence in the system is discussed.  相似文献   

8.
A screen-printed carbon electrode modified with both HRP and LOD (SPCE–HRP/LOD) has been developed for the determination of l-lactate concentration in real samples. The resulting SPCE–HRP/LOD was prepared in a one-step procedure, and was then optimised as an amperometric biosensor operating at [0, −100] mV versus Ag/AgCl for l-lactate determination in flow injection mode. A significant improvement in the reproducibility (coefficient variation of about 10%) of the preparation of the biosensors was obtained when graphite powder was modified with LOD in the presence of HRP previously oxidised by periodate ion (IO4). Optimisation studies were performed by examining the effects of LOD loading, periodation step and rate of the binder on analytical performances of SPCE–HRP/LOD. The sensitivity of the optimised SPCE–HRP/LOD to l-lactate was 0.84 nA L μmol−1 in a detection range between 10 and 180 μMol. The possibility of using the developed biosensor to determine l-lactate concentrations in various dairy products was also evaluated.  相似文献   

9.
A single line flow-injection system with immobilized-enzyme reactors is proposed for the sequential quantification of γ-aminobutyrate (GABA) and l-glutamate. A co-immobilized l-glutamate oxidase and catalase reactor and an immobilized GABase reactor were introduced into the flow line in series. Sample and reagent were injected into the flow line using an open sandwich method. GABA was selectively detected by GABase when α-ketoglutarate at a high concentration and NADP+ were injected as the reagents with a sample. When GABA at a high concentration and NADP+ were injected as the reagents with a sample, l-glutamate only was determined by the series of enzymatic reactions. NADPH produced by the immobilized-enzyme reactors was monitored fluorometrically at 455 nm (excitation at 340 nm). Linear relationships between the responses and concentrations of GABA or l-glutamate were observed in the ranges of 5.0 × 10−6-5.0 × 10−4 M and 1.0 × 10−5-5.0 × 10−4 M, respectively. The relative standard deviations for ten successive injections were less than 2% at the 0.5 mM level. This analytical method was applied to the sequential quantification of GABA and l-glutamate that were produced and consumed, respectively, by lactic acid bacteria, and the results showed good agreement with those obtained using liquid chromatography.  相似文献   

10.
A selective and sensitive amperometric method of analysis has been developed for determination of the trace amounts of mercury in waters at a platinum electrode based on the effect of the presence of mercury ions on the current due to oxidation of l-tyrosine. A decrease of signal was observed due to the formation of a complex of tyrosine with the Hg(II) ion adsorbed on the electrode surface. Several parameters were varied, such as applied potential, pH and concentration of tyrosine. The calibration plot was linear in the range from 0.02 to 3 μmol l−1 Hg(II) with r=0.997 and the detection limit (3σ) was 0.014 μmol l−1; the relative standard deviation was 2.2%. The study of interferences from other metal ions revealed a good selectivity of this method towards mercury(II). The stoichiometry of the mercury-tyrosine complex was determined to be 1:2 and the formation constant 627±19. Formation of complexes with mercury ions was also demonstrated with several catechol compounds and other amino acids. The method was applied to the analysis of contaminated waters.  相似文献   

11.
Messina GA  Torriero AA  Vito IE  Raba J 《Talanta》2004,64(4):1009-1017
The high sensitivity that can be attained using an enzymatic system and mediated by hydroquinone, has been verified by on-line interfacing of a rotating bioreactor and continuous flow/stopped-flow/continuous-flow processing. Horseradish peroxidase, HRP, [EC 1.11.1.7], immobilized on a rotating disk, in presence of hydrogen peroxide catalyses the oxidation of hydroquinone to p-benzoquinone, whose electrochemical reduction back to hydroquinone is detected on glassy carbon electrode (GCE) surface at −0.15 V. Thus, when l-ascorbic acid is added to the solution, this acid is reduced chemically (p-benzoquinone to hydroquinone) and acts as mediator of HRP, decreasing the peak current obtained proportionally to the increase of its concentration. The recovery of l-ascorbic acid from four samples ranged from 99.09 to 101.10%. This method could be used to determine l-ascorbic acid concentration in the range 12 nM-3.5 μM (r = 0.998). The determination of l-ascorbic acid was possible with a limit of detection of 6 nM in the processing of as many as 25 samples h−1. The method was successfully applied for the analysis of l-ascorbic acid in pharmaceutical formulations.  相似文献   

12.
A rapid method for the identification and quantification of l-ascorbic acid in wines by direct injection liquid chromatography equipped with a UV detection was developed. The levels of ascorbic acid were determined using a polymeric PLRP-S 100 A (5 μm) column (150 mm × 4.6 mm) with a mobile water/trifluoroacetic acid (99/1, v/v) phase. The method is rapid (less than 5 min) and sensitive (LOQ of 5 mg L−1). The calibration curve of ascorbic acid was linear (r = 0.999) over a concentration range between 1 and 200 mg L−1. Repeatability was less than 2.5% and the recovery over 95%.  相似文献   

13.
《Analytical letters》2012,45(15):2851-2859
Abstract

This paper describes a kinetic potentiometric method for the determination of thiols (RSH): l‐cysteine (cys), N‐acetyl‐l‐cysteine (NAC), l‐glutathione (glu), and d‐penicillamine (pen). The proposed method is based on the reaction of formation the sparingly soluble salts, RSAg, between RSH and Ag+ ions. During this reaction potential‐time curves were recorded by using an electrochemical cell with commercial iodide selective electrode. The rectilinear calibration graphs are obtained in the RSH concentration range from 1.0×10?5 to 1.0×10?3 M. The applicability of the proposed method was demonstrated by determination of chosen compounds in pharmaceutical dosage forms.  相似文献   

14.
A chitosan resin derivatized with N-methyl-d-glucamine (CCTS-NMDG) was synthesized by using a cross-linked chitosan (CCTS) as base material. The N-methyl-d-glucamine (NMDG) moiety was attached to the amino group of CCTS through the arm of chloromethyloxirane. The adsorption behavior of 59 elements on the synthesized resin was systematically examined by using the resin packed in a mini-column, passing water samples through it and measuring the adsorbed elements in eluates by ICP-MS. The CCTS-NMDG resin shows high ability in boron sorption with the capacity of 0.61 mmol ml−1 (= 2.1 mmol g−1). The sorption kinetics of this resin was faster than that of the commercially available resins. Other advantages of the synthesized resin are: (1) quantitative collection of boron at neutral pH regions; (2) complete removal of large amounts of matrices; (3) no loss of efficiency over prolonged usage; (4) effective collection of boron in wide range concentration using a mini column containing 1 ml resin; (5) complete elution of boron with 1 mol l−1 nitric acid. The resin was applied to the collection/concentration of boron in water samples. Boron in tap water and river water was found to be in the range of 6-8 μg l−1. The limit of detection (LOD) of boron after pretreatment with CCTS-NMDG resin and measurement by ICP-MS was 0.07 μg l−1 and the limit of quantification (LOQ) was 0.14 μg l−1 when the volume of each sample and eluent was 10 ml.  相似文献   

15.
Reactive extraction separation of binary amino acids from water using a microporous hollow fiber has been studied, in which the acidic extractant di(2-ethylhexyl)phosphoric acid (D2EHPA) was selected as an active carrier dissolved in kerosene. l-Phenylalanine (Phe) was extracted from an aqueous solution through the shell side of module to the organic phase through the lumen of fiber in the extraction module, in which l-Phe was then back-extracted to stripping phase in stripping module. Experiments were conducted as a function of the initial feed concentration of equimolar Phe and l-aspartic acid (l-Asp) (5 mol/m3), feed pH (3–5), the carrier concentration (0.1–0.5 mol/dm3), and stripping acidity (0.1–2 mol/dm3). The effect of process variables on the separation factor of Phe/Asp and the possible transport resistances including aqueous-layer diffusion, membrane diffusion, organic-layer, and interfacial chemical reaction were quantitatively studied and discussed. The high separation factor (β) of Phe/Asp was obtained to be 18.5 at feed pH 5 and 2 mol/dm3 of strip solution (HCl). The extraction and stripping processes appear to rely on pH dependence of the distribution coefficient of amino acids in reactive extraction system. The separation factor (β) was enhanced in hollow fiber membrane (HFM) process compared with conventional solvent process, which was a result of the counter transport of hydrogen ions.  相似文献   

16.
A novel biosensor for determination of d-amino acids (DAAs) in biological samples by using an electrode based on immobilization of a thermostable d-Proline dehydrogenase (d-Pro DH) within an agar gel membrane was developed. The electrode was simply prepared by spin-coating the agar solution with the d-Pro DH on a glassy carbon (GC) electrode.An electrocatalytic oxidation current of 2,6-dichloroindophenol (DCIP) was observed at −100 mV vs. Ag/AgCl with the addition of 5 and 20 mmol L−1d-proline. The current response and its relative standard deviation were 0.15 μA and 7.6% (n = 3), respectively, when it was measured in a pH 8.0 phosphate buffer solution containing 10 mmol L−1d-proline and 0.5 mmol L−1 DCIP at 50 °C. The current response of d-proline increased with increase of the temperature of the sample solution up to 70 °C. The electrocatalytic response at the d-Pro DH/agar immobilized electrode subsequently maintained for 80 days. Finally, the d-Pro DH/agar immobilized electrode was applied to determination of DAAs in a human urine sample. The determined value of DAAs in the human urine and its R.S.D. were 1.39 ± 0.12 mmol L−1 and 8.9% (n = 3), respectively.  相似文献   

17.
A study was performed to assess the performance of aminoacids immobilized on carbon nanotubes (CNTs) for their employment as a sorbent for solid phase extraction systems. An immobilization method is introduced and the aminoacid l-tyrosine was chosen as a case study. A spectrophotometric study revealed the amount of aminoacid immobilizated on CNTs surface, and it turned to be of 3174 μmol of l-tyr g−1. The material was tested for Co retention using a minicolumn inserted in a flow system. At pH 7.0, the amount of Co retained by the column was of 37.58 ± 3.06 μmol Co g−1 of CNTs. A 10% (v/v) HNO3 solution was chosen as eluent. The pH study revealed that Co binding increased at elevated pH values. The calculation of the mol ratio (moles of Co bound at pH 9 to moles of l-tyr) turned to be 3:1. The retention capacity was compared to other bivalent cations and showed the following tendency: Cu2+ > Ni2+ > Zn2+ ? Co2+. The analytical performance was evaluated and an enrichment factor of 180 was obtained when 10 mL of 11.37 μg L−1 Co solution was loaded onto the column at pH 9.0; reaching a limit of detection (LoD) of 50 ng L−1. The proposed system was successfully applied to Co determination in QC-LL2 standard reference material (metals in natural water).  相似文献   

18.
Poly(d,l-lactide) (PDLLA) degraded at processing temperature under air and nitrogen. A random chain scission model was established and used to determine the activation energy Ea, and FT-IR, 1H and 13C NMR were used to elucidate the degradation behavior under different atmospheres. Results showed that there were two to three stages. The 1st stage was dominated by the oligomers containing carboxylic acid groups and hydroxyl groups, during which oxygen and nitrogen had little effect on the degradation, thus they share similar Ea. When the oligomers were consumed over or evaporated, the 2nd stage began, and oxygen had a promoting effect on the thermo-oxidation process, resulting in the great decrease in Ea. The third stage of PDLLA was observed when it degraded under nitrogen over 200 °C, which was caused by the appearance of carboxylic acid substance.  相似文献   

19.
Lijuan Hua  Xueji Zhang 《Talanta》2009,77(5):1654-4893
Water-soluble CdTe quantum dots (QDs) with five sizes (2.25, 2.50, 2.77, 3.12, and 3.26 nm) were synthesized with the hydrothermal method. The electrochemiluminescence (ECL) of CdTe QDs was investigated in detail in air-saturated solution without adding foreign oxidant. It was found that the ECL of CdTe QDs displayed a size-dependent property. With the increasing in the particle size of the CdTe QDs, the ECL intensity was gradually increased, in addition, both ECL peak potentials and ECL onset potentials of CdTe QDs were shifted positively. Influences of some factors on the ECL intensity were investigated. Under the optimal conditions, the ECL intensity had a linear relationship with the concentration of l-cysteine (l-Cys) in the range from 1.3 × 10−6 to 3.5 × 10−5 mol L−1 (R2 0.996) with a detection limit of 8.7 × 10−7 mol L−1 (S/N = 3). The proposed method was applied to the determination of l-Cys in real samples with satisfactory results. Compared with previous reports, it has better selectivity for the determination of l-Cys.  相似文献   

20.
Aluminum(III) can be absorbed when it is appropriately complexed. There are several plasma components which can bind weakly Al(III). Many proteins bind Al(III) in solution quite strongly. Carbohydrates bearing an abundance of electronegative functional groups can interact with metal cations. In solution, d-ribose exists as a mixture at equilibrium of many isomers and only a few of them bear a ‘complexing’ sequence of the hydroxyl groups. The presence of d-ribose in an Al(III) solution experiences a decrease of its Brönsted-acid sites. The lowering of the Brönsted acidity of an Al(III)-d-ribose mixture suggests the existence of attractive interactions (‘association’) between Al(III) ion and the complexing sequence of the hydroxyls of d-ribose. There is enhancement in the stability of the interaction complexes between Al(III) and d-ribose through strong intramolecular hydrogen bonding, which offers the possibility to investigate the kinetics of the subsequent proton release reactions. On the basis of the kinetic results, it may be concluded that proton release reactions, which are associated with the complexation reactions, are associatively activated. The complexes (Al(H2O)6−n(d-ribosenH)(3−n)+) resulting from the various ‘complexing’ forms of d-ribose are formed at mainly acidic pH. As the pH increases, the values of the activation enthalpy, ΔH, are changing, because of the formation of mixed hydroxo-complexes (Al(H2O)6−nm(OH)m(d-ribosenH)(3−nm)+); finally, OH displaces d-ribose from the coordination sphere of Al(III) in a rather slow process, i.e. with high values of ΔH; the activation enthalpy values, ΔH, decrease with the progression of the displacement, becoming finally very small due to the formation of a precipitate. Chelate coordination of d-ribose with some divalent and trivalent metal ions has been also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号