首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of ethidium bromide (2,7-diamino-10-ethyl-9-phenylphenanthridinium bromide; EB) with double stranded (ds) calf thymus DNA and thermally denatured single stranded (ss) DNA was studied in solution and at the electrode surface by means of transfer voltammetry using a carbon paste electrode (CPE) as working electrode in 0.2 M acetate buffer, pH 5.0. As a result of intercalation of this dye between the base pairs of dsDNA, the characteristic peak of dsDNA, due to the oxidation of guanine residues, decreased and after a particular concentration of EB a new peak at +0.81 V appeared, probably due to the formation of a complex between dsDNA and EB. The non-intercalated EB gives another peak, but at an increased concentration of the dye. A similar behaviour was observed during the interaction of the dye with ssDNA.Furthermore, the interaction of EB with ds, ss and supercoiled (sc) DNA was studied at the hanging mercury drop electrode (HMDE) surface by means of alternating current voltammetry in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) as supporting electrolyte. dsDNA yields a smaller peak at −1.42 V (peak III) compared to the one yielded by ssDNA, since the latter is a relaxed and more accessible form. By addition of EB into the buffer solution an increase of peak III was observed in the dsDNA form as well as in ssDNA resulting from their interaction with EB. Furthermore, the appearance of peak III in covalently closed circular scDNA after exposure to increasing concentrations of EB is a result of the introduction of ‘free ends’ in DNA affecting its structural integrity.  相似文献   

2.
P. Palaska 《Talanta》2007,72(3):1199-1206
The interaction of cyclophosphamide (CP) with calf thymus double-stranded DNA (dsDNA) and thermally denatured single-stranded DNA (ssDNA) immobilized at the carbon paste (CPE) and pencil graphite electrodes (PGE), was studied electrochemically based on oxidation signals of guanine and adenine using differential pulse voltammetry (DPV).As a result of the interaction of CP with DNA, the voltammetric signals of guanine and adenine increased in the case of dsDNA while a slight increase was observed in ssDNA. The effect of experimental parameters such as the interaction time between CP and DNA forms and the concentration of CP, were studied using DPV with CPE and PGE. Additionally, reproducibility and detection limits were determined using both electrodes. A comparison of the analytical performance between CPE and PGE was done. Our results showed that these two different DNA biosensors could be used for the sensitive, rapid and cost effective detection of CP itself as well as of CP-DNA interaction.Furthermore, the interaction of CP with dsDNA and ssDNA was studied in solution and at the electrode surface by means of alternating current voltammetry (ACV) in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) supporting electrolyte, using a hanging mercury drop electrode (HMDE) as working electrode.The conclusions of this study were mainly based on tensammetric peaks I (at −1.183 V) and II (−1.419 V) of DNA. This study involved the interaction of CP with surface-confined and solution phase DNA where experimental parameters, such as the concentration of CP and the interaction time, were studied. By increasing the concentration of CP, an increase of peak II was observed in both ds and ssDNA, while an increase of peak I was observed only in the case of dsDNA. An overall conclusion of the study using HMDE was that the interaction of CP with surface-confined DNA significantly differed from that with solution phase DNA. The increase of peaks I and II was lower in the case of interaction of CP with surface-confined DNA, probably due to steric positioning of DNA at the electrode surface.  相似文献   

3.
4.
In this study, DNA was first fabricated on a glassy carbon electrode by UV-irradiation. Through this process, water-soluble DNA was converted into insoluble materials, and a stable DNA film formed on the electrode. Ethidium bromide (EtBr), a typical model substance for harmful chemicals having planer structure, was used as an electroactive intercalator. This allowed our group to investigate the electrochemical and accumulative behaviors of the intercalator in UV-irradiated DNA film on the electrode. The UV-irradiated, DNA film-modified electrode (UV-DNA-FE) made it possible to accumulate electroactive EtBr on the electrode and detect it after accumulation. The modified electrode was used to detect dibenzofuran (DBF) as an environmental pollutant. The measurements were successfully obtained by focusing on the variation of the electrode response of EtBr, based on the competitive reaction between EtBr and DBF for the intercalating sites of DNA. The results indicated the possibility of using UV-DNA film as a sensing mechanism.  相似文献   

5.
This paper describes the development of a sequential injection analysis method to automate the determination of atrazine by square wave voltammetry exploiting the concept of monosegmented flow analysis to perform in-line sample conditioning and standard addition. To perform these tasks, an 800 μL monosegment is formed, composed by 400 μL of sample and 400 μL of buffer/standard solution. To obtain an efficient homogenization, the sample solution is divided in five zones intercalated by four zones of the Britton-Robinson buffer (pH 2.0) in presence of appropriate concentration of NaNO3 and varying atrazine standard concentrations. This mixture zone is isolated from the carrier solution by two 100 μL air bubbles. After homogenization in an auxiliary reaction coil the mixture zone is injected toward the flow cell, which is adapted to the capillary of a hanging drop mercury electrode, at a flow rate of 50 μL s−1. After a suitable delay time, the potential is scanned from −0.5 to −1.2 V versus Ag/AgCl using a frequency of 300 Hz and pulse height of 25 mV. The linear dynamic range is observed for atrazine concentrations between 1.16 × 10−7 and 2.32 × 10−6 mol L−1, obeying the linear equation ip = (−6.91 ± 0.07) × 108[atrazine] + (4 ± 8), with r2 = 0.9996, for which the slope is given in nA L mol−1. The detection and quantification limits of the method are 2.1 × 10−8 and 7.0 × 10−8 mol L−1, respectively. The sampling frequency is 37 h−1, when the standard addition protocol is followed. This frequency can be increased to 42 h−1 if the protocol to obtain in-line calibration curve is used for quantification. The method was applied for determination of atrazine in spiked river water samples and its accuracy was evaluated by comparison with the batch standard addition approach, which revealed that there is no evidence of statistically significant differences between the two methods.  相似文献   

6.
The proposed method for cyanide determination at the ultratrace level by differential pulse voltammetry is based in the sensitivity enhancement obtained when both Cu(II) and EDTA are present in the background electrolyte. Comparison of the detection limits and linear dynamic ranges using the conventional borate (pH 9.75), and the proposed borate-EDTA–Cu(II) background electrolytes was carried out. Best results have been obtained with the addition of 0.5 mmol l−1 EDTA and 0.02 mmol l−1 of Cu(II), which allow a detection limit of 1.7 μg l−1 CN (65 nmol l−1 — absolute detection limit 34 ng) with a precision better than ±2% for a 40 μg l−1 level. Calibration range extended from detection limit up to 100 μg l−1. Cyclic voltammetry indicates that the measured cyanide peak is obtained when the electrogenerated CuCN adsorbed onto the hanging mercury drop electrode surface, is oxidised at positive going potential scan. The method has been successfully applied to various industrial waste waters such as metal-finishing waste waters, water/sand mixtures from cleaning processes of coke production, leachates from wastes obtained from electrolytic cells of aluminium production, and liquors from gold extraction industry. Results obtained by the proposed method showed good agreement with those obtained by the standard methods (ion-selective potentiometry and the spectrophotometric pyridine method).  相似文献   

7.
A simple, fast and quantitative method was developed for the determination of As(III) and total inorganic arsenic (As (total)) in natural spring and mineral waters using square wave cathodic stripping voltammetry (SWCSV) at a hanging mercury drop electrode (HMDE). In the determination of As(III), pre-concentration was carried out on the electrode from a solution of 1 mol/l HCl in the presence of 45 ppm of Cu(II) at a potential of −0.39 V versus Ag/AgCl, and the deposited intermetallic compound was reduced at a potential of about −0.82 V versus Ag/AgCl. In the determination of As (total) the pre-concentration was carried out in 1 mol/l HCl in the presence of 400 ppm of Cu(II) at a potential of −0.40 V versus Ag/AgCl, and the intermetallic compound deposited was reduced at a potential of about −0.76 V versus Ag/AgCl. For determination of As(III) the quantification limit was 0.2 ppb for a deposition time of 40 s, and the relative standard deviation (R.S.D.) was calculated to be 6% (n=13) for a solution with 8 ppb of As(III). For As (total), the quantification limit was 2 ppb for a deposition time of 3 min, and the R.S.D. was calculated to be 3% (n=10) for a solution with 8 ppb of As(V). The method was validated by application of recovery and duplicate tests in the measurements of As(III) and As (total) in natural spring and mineral waters. For As (total), the results of the SWCSV method were compared with the results obtained by optical emission spectrometry with ICP coupled to hydride generation (OES-ICP-HG) good correlation being observed.  相似文献   

8.
This paper describes the development of a sequential injection analysis method to automate the determination of picloram by square wave voltammetry exploiting the concept of monosegmented flow analysis to perform in-line sample conditioning and standard addition. To perform these tasks, an 800 μL monosegment is formed, composed by 400 μL of sample and 400 μL of conditioning/standard solution, in medium of 0.10 mol L−1 H2SO4. Homogenization of the monosegment is achieved by three flow reversals. After homogenization the mixture zone is injected toward the flow cell, which is adapted to the capillary of a hanging drop mercury electrode, at a flow rate of 50 μL s−1. After a suitable delay time, the potential is scanned from −0.5 to −1.0 V versus Ag/AgCl at frequency of 300 Hz and pulse height of 25 mV. The linear dynamic range is observed for picloram concentrations between 0.10 and 2.50 mg L−1 fitting to the linear equation Ip = (−2.19 ± 0.03)Cpicloram + (0.096 ± 0.039), with R2 = 0.9996, for which the slope is given in μA L mg−1. The detection and quantification limits are 0.036 and 0.12 mg L−1, respectively. The sampling frequency is 37 h−1 when the standard addition protocol is followed, but can be increased to 41 h−1 if the protocol to obtain in-line external calibration curve is used for quantification. The method was applied for determination of picloram in spiked water samples and the accuracy was evaluated by comparison with high performance liquid chromatography using molecular absorption at 220 nm for detection. No evidences of statistically significant differences between the two methods were observed.  相似文献   

9.
A square-wave voltammetric (SWV) method using a hanging mercury drop electrode (HMDE) has been developed for determination of the herbicide molinate in a biodegradation process. The method is based on controlled adsorptive accumulation of molinate for 10 s at a potential of –0.8 V versus AgCl/Ag. An anodic peak, due to oxidation of the adsorbed pesticide, was observed in the cyclic voltammogram at ca. –0.320 V versus AgCl/Ag; a very small cathodic peak was also detected. The SWV calibration plot was established to be linear in the range 5.0×10–6 to 9.0×10–6 mol L–1; this corresponded to a detection limit of 3.5×10–8 mol L–1. This electroanalytical method was used to monitor the decrease of molinate concentration in river waters along a biodegradation process using a bacterial mixed culture. The results achieved with this voltammetric method were compared with those obtained by use of a chromatographic method (HPLC–UV) and no significant statistical differences were observed.  相似文献   

10.
Stanić Z  Girousi S 《Talanta》2008,76(1):116-121
The interaction of copper(I) with double-stranded (ds) calf thymus DNA was studied in solution and at the electrode surface by means of transfer voltammetry using a carbon paste electrode (CPE) as working electrode in 0.2 M acetate buffer solution (pH 5.0). As a result of the interaction of Cu(I) between the base pairs of the dsDNA, the characteristic peaks of dsDNA, due to the oxidation of guanine and adenine, increased and after a certain concentration of Cu(I) a new peak at +1.37 V appeared, probably due to the formation of a purine-Cu(I) complex (dsDNA-Cu(I) complex). Accordingly, the interaction of copper(I) with calf thymus dsDNA was studied in solution as well as at the electrode surface using hanging mercury drop electrode (HMDE) by means of alternating current voltammetry (AC voltammetry) in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) as supporting electrolyte. Its interaction with DNA is shown to be time dependent. Significant changes in the characteristic peaks of dsDNA were observed after addition of higher concentration of Cu(I) to a solution containing dsDNA, as a result of the interaction between Cu(I) and dsDNA. All the experimental results indicate that Cu(I) can bind to DNA by electrostatic binding and form an association complex.  相似文献   

11.
Here we report the characterization of an electrochemical mercury (Hg2+) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a “signal-off” sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a “signal-off” or “signal-on” sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed “signal-on” behavior at low frequencies and “signal-off” behavior at high frequencies. In DPV, the sensor showed “signal-off” behavior at short pulse widths and “signal-on” behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10 nM, with a linear dynamic range between 10 nM and 500 nM. In addition, the sensor responded to Hg2+ rather rapidly; majority of the signal change occurred in <20 min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg2+, which has not been previously reported. More importantly, the observed “switching” behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors.  相似文献   

12.
An approximate but general theoretical treatment for reversible and irreversible stripping polarographic systems is presented. The treatment is based on the development of an average current (i), which at plating times exceeding 15 s. is analogous to the instantaneous current in d.c. polarography. Plots of i vs. (E – E°) are generated for reversible and irreversible waves and are discussed for the reduction of copper(II) in sea water as an example. From stripping polarography and anodic stripping voltammetry, this work indicates that the overall reduction of copper(II) at the natural pH is kinetically hindered and thus is “irreversible”. The reversibility and the determination of copper in sea water by a.s.v. can be improved by acidification and/or by the addition of ethylenediamine.  相似文献   

13.
Stanić  Zorka  Girousi  Stella 《Mikrochimica acta》2009,164(3-4):479-485
Microchimica Acta - The interaction of copper(II) with double-stranded (ds) calf thymus DNA was studied in solution as well as at the electrode surface by means of differential pulse stripping...  相似文献   

14.
Direct current voltammetry and differential pulse voltammetry have been used to investigate the electrochemical behaviour of two phytochelatins: heptapeptide (gamma-Glu-Cys)3-Gly and pentapeptide (gamma-Glu-Cys)2-Gly, tripeptide glutathione gamma-Glu-Cys-Gly and its fragments: dipeptides Cys-Gly and gamma-Glu-Cys at the hanging mercury drop electrode in the presence of cobalt(II) ions. Most interesting results were obtained with direct current voltammetry in the potential region of -0.80 V up to -1.80 V. Differential pulse voltammetry of the same solutions of Co(II) with peptides gives more complicated voltammograms with overlapping peaks, probably in connection with the influence of adsorption at slow scan rates necessarily used in this method. However, in using Brdicka catalytic currents for analytical purposes, differential pulse voltammograms seem to be more helpful. Presented investigations have shown that particularly the prewave of cobalt(II) allows distinguishing among phytochelatins, glutathione, and its fragments.  相似文献   

15.
Sodium4-hydroxy-3-([2-picolinoylhydrazineylidene]methyl)benzenesulfonate (NaH2PH) was synthesized as a novel water-soluble ligand, by the condensation of picolinohydrazide with sodium 3-formyl-4-hydroxybenzenesulfonate. The (NaH2PH) ligand and its isolated Co (II), Fe (III), Hg (II), and Pd (II) complexes were analyzed by elemental analysis and characterized by spectroscopic (Fourier transform infrared spectroscopy, UV–visible, powder XRD, 1H NMR,13C NMR, MS) and magnetic measurements. By comparing IR spectra of both ligand and the metal complexes, one can assume that the (NaH2PH) ligand behaves as a bi-negative tetradentate (ONNO) in [Co (NaPH)(H2O)2].3H2O, and a mono-negative tridentate (ONO) in [Fe (NaPH)Cl2(H2O)] complex, whereas in [Hg2(NaPH)Cl2(H2O)] complex, (NaH2PH) coordinates as a bi-negative pentadentate (ONNNO) ligand via deprotonated OH group of phenolic ring (C=N)Py and (C=N*) coordinated to one of Hg (II) ion and the oxygen atom of enolic group and (C=N)az group with the another Hg (II) ion. Moreover, (NaH2PH) acts as bi-negative tridentate (ONO) ligand in [Pd (NaPH)(H2O)].2H2O complex. The geometries of complexes were suggested based on the UV–visible spectra, magnetic measurements and confirmed by applying discrete Fourier transform (DFT) optimization studies. The thermal fragmentation of both [Pd (NaPH)(H2O)].2H2O and [Co (NaPH)(H2O)2].3H2O complexes was performed, and the kinetic and thermodynamic parameters were computed using the Coats–Redfern and Horowitz–Metzger methods. The redox behavior of divalent ions of cobalt and mercury were discussed by the cyclic voltammetry technique in the presence and absence of (NaH2PH) ligand. Biological potencies of the ligand and its metal complexes were evaluated as antioxidants (ABTS and DPPH), anticancer, DNA, and antimicrobial (Staphylococcus aureus and Bacillus subtilis as Gram (+) bacteria, Escherichia coli and Pseudomonas aeruginosa as Gram (−) bacteria, and Candida albicans as fungi).  相似文献   

16.
Molybdenum(VI) is determined by anodic stripping voltammetry using a carbon paste electrode modified in situ with cetyltrimethylammonium bromide (CTAB). The preconcentration of molybdenum is performed by adsorption and reduction of ion-pairs of cetyltrimethylammonium and molybdenum(VI) oxalate at a potential of −0.4 V vs. the saturated calomel electrode (SCE). The supporting electrolyte contains 0.01 M oxalic acid and 0.075 mM CTAB. Differential pulse anodic stripping voltammetry exploiting the reoxidation signal is used for the determination of trace levels of molybdenum(VI). Linearity between current and concentration exists for a range of 0.5–500 μg 1−1 Mo with proper preconcentration times; the limit of detection (calculated as 3σ) is 0.04 μg 1−1 with an accumulation period of 10 min.  相似文献   

17.
Structures of bromo-metal complexes in concentrated aqueous solutions of FeBr2 and of CoBr2 were investigated by X-ray diffraction analysis. The complexes possess an octahedral geometry coordinating Br along with H2O ligands. The frequency factors of metal-Br contacts per one atom of metal were 0.325 for the 2.7M (mol-dm–3) and 0.747 for the 4.5M FeBr2 solutions, and 0.280 for the 2.8M and 0.595 for the 4.3M CoBr2 solutions. The frequency factors suggested that the tendency of metal ions to forming monobromo complexes is in the order, Fe>Co>Ni相似文献   

18.
The interactions between cobalt polypyridyl coordination compounds Co(L)(3)(3+)(L=1,10-phenanthroline(phen), and bipyridine(bpy)),6-mercaptopurine and calf thymus DNA have been investigated using electrochemical methods(cyclic voltammetry, differential pulse voltammetry), electronic absorption spectroscopy and viscosity measurements. Results indicate that there is an obvious interaction equilibrium between Co(L)(3)(3+), 6-mercaptopurine and DNA. The phenomena are investigated for the first time, and believed to be helpful to use the anticancer drugs more efficiently.  相似文献   

19.
Bănică FG  Spătaru N 《Talanta》1999,48(2):491-494
The carbon-sulfur bond in methylthiohydantoin-glycine (MTH-Gly) is broken during the deposition on the mercury electrode at potentials around -0.1 V versus SCE, giving mercury sulfide which is detected by the characteristic cathodic peak at -0.7 V. If cobalt (II) is also present, the product of the deposition step is a mixture of mercury and cobalt sulfides. During the cathodic scan, the last one is reduced to a transient Co(0) species that catalyses the reduction of hydrogen ion to the hydrogen molecule by a mechanism alike to that emphasized for the Co(II)-sulfide ion system (F.G. B?nic?, N. Sp?taru, T. Sp?taru, Electroanalysis 9 (1997) 1341). This electrode process induces a cathodic peak at -1.4 V that enables the determination of MTH-Gly down to 10(-7) M in the borax buffer at pH 8.5. The possible extension of this method to other classes of organic sulfur compounds is briefly discussed.  相似文献   

20.
Zn (II), Cd (II), Hg (II) and U (VI)O22+ complexes of water‐soluble thiosemicarbazone ligand (NaH3PyTSC) have been prepared and characterized using various techniques. Fourier transform‐infrared (FT‐IR) demonstrated that NaH3PyTSC ligand behaves as a binegative NOS tridentate in [Hg(H2PyTSC)(H2O)]2 and [UO2(H2PyTSC)(H2O)]2 complexes via the deprotonated SH, (C=N)az groups from one molecule and SO3? group from another molecule, while it behaves as a binegative NNSO tetradentate in [Cd(H2PyTSC)(H2O)2]2 complex through the deprotonated SH group, the SO3? group and the nitrogen of both the (C=N)az and (C=N)py. Finally, it behaves as a binegative OO bidentate in [Zn(H2PyTSC)(H2O)2]2·2H2O complex by the deprotonated OH group from one molecule and SO3? group from another ligand molecule. The spectral data suggest a tetrahedral coordination around Hg (II) and Zn (II) ions, and an octahedral coordination around Cd (II) and U (VI)O22+ ions. The NaH3PyTSC ligand exhibited maximum luminescent intensity at 501 nm, while Zn (II), Cd (II) and Hg (II) chelates show emission bands at 459, 458 and 358 nm, respectively. Two comparable methods were used to estimate various thermodynamic parameters. Cyclic voltammetry has been studied for Cd (II) complex in solution. Different biological applications of the isolated complexes have been estimated. It was found that [Cd(H2PyTSC)(H2O)2]2 showed the most effective antioxidant and anticancer activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号