首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This paper made a comparative study of new matrices of nanostructured materials (multiwall carbon nanotube, fullerene and hydroxylated fullerene) aiming to compare them when employed in the process of immobilization of enzyme horseradish peroxidase (HRP) on the development of amperometric biosensors for the determination phenolic compounds. The results confirm that all the three nanostructured matrices used in the preparation of the biosensor show improvements when acting as a transducer stabilizer and immobilization matrix, comparing to the electrode of carbon paste. Regarding the performance of these matrices it is verified that the developed biosensor employed the multiwall carbon nanotube as matrix immobilized enzyme HRP has shown the best sensitivity for the molecule of phenol (33 nA cm?2 µmol?1 L), however, regarding the range of linear response, the elaborated biosensor containing the hydroxylated fullerene has shown the best response (5–200 µmol L?1). In terms of operational stability, the biosensors maintained their responses around 95 % after more than 200 analyzes. It is also important to mention that in all the cases, the association with the graphite powder improves the answers of the biosensors around 10 to 15 %.  相似文献   

2.
Pseudomonas putida DSM 50026 cells were used as the biological component and the measurement was based on the respiratory activity of the cells estimated from electrochemical measurements. The cells were immobilised on carbon nanotube (CNT) modified carbon paste electrodes (CPE) by means of a redox osmium polymer, viz. poly(1-vinylimidazole)12-[Os-(4,4′-dimethyl-2,2′-dipyridyl)2Cl2]2+/+. The osmium polymer efficiently shuttles electrons between redox enzymes located in the cell wall of the cells and promotes a stable binding to the electrode surface. The effect of varying the amounts of CNT and osmium polymer on the response to glucose was investigated to find the optimum composition of the sensor. The effects of pH and temperature were also examined. After the optimisation studies, the system was characterised by using glucose as substrate. Moreover, the microbial biosensor was also prepared by using phenol adapted bacteria and then, calibrated to phenol. After that, it was applied for phenol detection in an artificial waste water sample.  相似文献   

3.
《Electroanalysis》2017,29(8):1976-1984
A new electrochemical microbial biosensor system based on Candida tropicalis was developed for the fast detecting of dopamine and epinephrine. Candida tropicalis was immobilized in a carbon paste electrode (CPE) with single wall carbon nanotube (SWCNT). Immobilized cells were used as a origin of the polyphenol oxidase (PPO) to develop voltammetric epinephrine and dopamine biosensor. Voltammetric determination of phenolic compounds such as epinephrine and dopamine a simple technique which is available. Direct oxidation of phenols can be used, but the oxidation potentials of this compounds are similar and they can not be detected distinctively. Another possibility is the use of biosensors based on the polyphenol oxidase (tyrosinase) enzyme that oxidizes the phenolic compounds into their related quinones. By this way, phenolic compounds are epinephrine and dopamine which were used in this study as well detected at different potentials. In this study differential pulse voltammetry and amperometry techniques were used for the determination of dopamine and epinephrine. The effect of varying the amounts of SWCNT and the response of microorganism to epinephrine was investigated to find the optimum composition of the sensor. The effects of pH and temperature were also examined. Increases in biosensor responses obtained by amperometric measurements were linearly related to dopamine concentrations between 0.025 and 0.25 mM and epinephrine concentrations between 0.01 and 0.1 mM. Limits of detection of the biosensor for dopamine and epinephrine were calculated to be 0.008 and 0.0023 mM, respectively. Finally, proposed system was applied to epinephrine and dopamine analysis in pharmaceutical drugs and synthetic serum and the results were compared with LC MS MS method.  相似文献   

4.
Summary A fully integrated screening system for phenolic compounds was developed incorporating on-line solid phase extraction, fractionation and biosensor detection. Two different types of biosensors, solid graphite and carbon paste electrodes incorporating the enzyme tyrosinase, were compared and used in the screening system. Interfacing of the solid phase extraction and fractionation with the biosensor detection was given special attention since the biosensors were not compatible with the organic modifier used for desorption of phenols from the solid phase extraction step. The system was validated with conventional analytical techniques. Surface water samples from the Ebro river were spiked with 1,10, and 25g L–1 of catechol, phenol,p-cresol, respectively. Three out of seven samples were spiked and the correct samples were identified, containing phenols equivalent to the spiked concentrations.  相似文献   

5.
Spectrographic graphite electrodes were modified through adsorption with laccase from Trametes versicolor. The laccase-modified graphite electrode was used as the working electrode in an amperometric flow-through cell for monitoring phenolic compounds in a single line flow injection system. The experimental conditions for bioelectrochemical determination of catechol were studied and optimized. The relative standard deviation of the biosensor for catechol (10 μM, n=12) was 1.0% and the reproducibility for six laccase-modified graphite electrodes, prepared and used different days was about 11%. The optimal conditions for the biosensor operation were: 0.1 M citrate buffer solution ( at pH 5.0), flow rate of 0.51 ml min−1 and a working potential of −50 mV versus Ag|AgCl. At these conditions the responses of the biosensor for various phenolic compounds were recorded and the sensor characteristics were calculated and compared with those known for biosensors based on laccase from Coriolus hirsutus, cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium and horseradish peroxidase (HRP).  相似文献   

6.
The preparation of a tyrosinase biosensor based on the immobilization of the enzyme onto a glassy carbon electrode modified with electrodeposited gold nanoparticles (Tyr-nAu-GCE) is reported. The enzyme immobilized by cross-linking with glutaraldehyde retains a high bioactivity on this electrode material. Under the optimized working variables (a Au electrodeposition potential of −200 mV for 60 s, an enzyme loading of 457 U, a detection potential of −0.10 V and a 0.1 mol l−1 phosphate buffer solution of pH 7.4 as working medium) the biosensor exhibited a rapid response to the changes in the substrate concentration for all the phenolic compounds tested: phenol, catechol, caffeic acid, chlorogenic acid, gallic acid and protocatechualdehyde. A R.S.D. of 3.6% (n = 6) was obtained from the slope values of successive calibration plots for catechol with the same Tyr-nAu-GCE with no need to apply a cleaning procedure to the biosensor. The useful lifetime of one single biosensor was of at least 18 days, and a R.S.D. of 4.8% was obtained for the slope values of catechol calibration plots obtained with five different biosensors. The kinetic constants and the analytical characteristics were calculated for all the phenolic compounds tested. The Tyr-nAu-GCE was applied for the estimation of the phenolic compounds content in red and white wines. A good correlation of the results (r = 0.990) was found when they were plotted versus those obtained by using the spectrophotometric method involving the Folin-Ciocalteau reagent.  相似文献   

7.
A highly selective and sensitive electrogenerated chemiluminescence (ECL) biosensor for the detection of prostate PC-3 cancer cells was designed using a prostate specific antibody as a capture probe and ruthenium complex-labelled wheat germ agglutinin as a signal probe. The ECL biosensor was fabricated by covalently immobilising the capture probe on a graphene oxide-coated glassy carbon electrode. Target PC-3 cells were selectively captured on the surface of the biosensor, and then, the signal probe was bound with the captured PC-3 cells to form a sandwich. In the presence of tripropylamine, the ECL intensity of the sandwich biosensor was logarithmically directly proportion to the concentration of PC-3 cells over a range from 7.0 × 102 to 3.0 × 104 cells mL−1, with a detection limit of 2.6 × 102 cells mL−1. The ECL biosensor was also applied to detect prostate specific antigen with a detection limit of 0.1 ng mL−1. The high selectivity of the biosensor was demonstrated in comparison with that of a lectin-based biosensor. The strategy developed in this study may be a promising approach and could be extended to the design of ECL biosensors for highly sensitive and selective detection of other cancer-related cells or cancer biomarkers using different probes.  相似文献   

8.
Onion leaves monophenol monooxygenase and o-diphenol oxidase were extracted by salt and solvent method followed by purification on affinity column using natural affiant. For the fabrication of enzyme-based biosensor, composite matrix of natural biopolymers agar-Abelmoschus escucentus gum was used to immobilize monophenol monooxygenase and o-diphenol oxidase. L-tyrosine and L-dopa were used as substrate for the measurement of phenol. Monophenol monooxygenase and o-diphenol oxidase oxidizes phenolic substrate to the corresponding quinone to allow convenient low-potential detection of phenolic analyte. In the enzymatic catalysis, reduction of quinone to phenol was also observed using (vs.Ag/AgCl) at a platinum electrode. The Vmax for tyrosine and dopa is 102.4 and 108.2 μM/litre/min where as Km is 11.26 X 10-3 mM and 11.90 X 10-3 mM respectively. The biosensor exhibited good performance in terms of reusability, linearity, sensitivity, fabrication, simplicity, shelf-life and operational stability. Thus, the biosensor is suitable for the analytical quantification of phenols.  相似文献   

9.
A novel tyrosinase (Tyr) biosensor based on liposome bioreactor and chitosan (CS) nano-composite has been developed for the detection of phenolic compounds. Liposome-based bioreactors were prepared by encapsulating the enzyme Tyr in l-α-phosphatidylcholine liposome resulting in spherical bioreactor with a mean diameter of 8.5?±?1.25 μm. The encapsulation efficiency and drug loading content of the Tyr-loaded liposome-based bioreactors were about 46.35?±?0.85 and 41.15?±?0.95 %, respectively. Porins were embedded into the lipid membrane, allowing for the free substrate transport, but not that of the enzyme due to size limitations. The glassy carbon electrode (GCE) was alternately immersed in CS and Tyr liposome bioreactor (TLB) to assemble bilayer films [(CS/TLB)/GCE]. The presence of Tyr in the biosensor was confirmed by scanning electron microscopy, cyclic voltammetry, and electrochemical measurements. The results indicated that the biosensor was applied to detect phenol with a broad linear range from 0.25 nM to 25 μM, the detection limit was brought down to 0.091 nM. The apparent Michaelis–Menten constant, K m, for the enzymatic reaction was 34.78 μM. The novel biosensor exhibits good repeatability and stability. Such new biosensor based on encapsulation of Tyr within liposome bioreactors shows great promise for rapid, simple, and cost-effective analysis of phenolic contaminants in environmental samples. The proposed strategy can be extended for the development of other enzyme-based biosensors.  相似文献   

10.
A new tyrosinase-based biosensor was developed for detection of phenolic compounds using composite film of multiwall carbon nanotube (MWCNT)/dimethylditetradecylammonium bromide (DTDAB)/tyrosinase (Tyr) on a Nafion-incorporated carbon paste electrode. The biosensor showed a sensitive electrochemical response to the reduction of the oxidation products of different phenolic compounds (phenol, catechol, p-cresol, and p-chlorophenol) by dissolved O2 in the presence of the immobilized enzyme. The effects of pH, operating potential, MWCNT concentration, and the DTDAB/Tyr ratio on electrochemical response were explored for optimum analytical performance. The biosensor exhibited a linear response range of 1.5–25.0, 2.0–15.0, 2.0–15.0, and 2.5–25.0 μM and sensitivity of 2,900, 3,100, 3,100, and 1,500 μA/mM for phenol, catechol, p-cresol, p-chlorophenol, respectively. In addition, the response of the enzyme electrode showed Michaelis–Menten behavior at concentrations of the phenolic compounds higher than 5.0 μM. The stability and the application of the biosensor were also evaluated.  相似文献   

11.
A DNA biosensor was constructed by immobilizing DNA on a glassy carbon (GC) electrode modified with multiwall carbon nanotubes (MWNTs) dispersed in Nafion (DNA/MWNTs/GCE). The DNA-modified electrode exhibited two well-defined oxidation peaks corresponding to the guanine and adenine residues of DNA, respectively. The effects of the adsorption potential, DNA concentration and quantity of MWNTs used for DNA immobilization were investigated, as were the effects of buffer, pH and scan rate on the voltammetric behavior of DNA. Phenol, m-cresol and catechol showed noticeable inhibition towards the response of the electrode due to their interactions with DNA. These findings were used to design biosensors with linear response to these phenolic pollutants.  相似文献   

12.
Chee GJ 《Talanta》2011,85(4):1778-1782
Trichloroethylene (TCE) is a toxic, recalcitrant groundwater pollutant. TCE-degrading microorganisms were isolated from various environments. The aerobic bacteria isolated from toluene- and tryptophan-containing media were Pseudomonas sp. strain ASA86 and Burkholderia sp. strain TAM17, respectively; these are necessary for inducing TCE biodegradation in a selective medium. The half-degradation time of TCE to a concentration of 1 mg/L was 18 h for strain ASA86 and 7 days for strain TAM17. While identifying toluene/TCE degradation genes, we found that in strain ASA86, the gene was the same as the todC1 gene product encoding toluene dioxygenase identified in Pseudomonas putida F1, and that in strain TAM17, the gene was similar to the tecA1 gene product encoding chlorobenzene dioxygenase identified in Burkholderia sp. PS12. A novel TCE biosensor was developed using strain ASA86 as the inducer of toluene under aerobic conditions. The TCE biosensor exhibited a linear relationship below 3 ppm TCE. Detection limit of the biosensor was 0.05 ppm TCE. The response time of the biosensor was less than 10 min. The biosensor response displayed a constant level during a 2 day period. The TCE biosensor displayed sufficient sensitivity for monitoring TCE in environmental systems.  相似文献   

13.

Background

Biosensors have attracted increasing attention as reliable analytical instruments in in situ monitoring of public health and environmental pollution. For enzyme-based biosensors, the stabilization of enzymatic activity on the biological recognition element is of great importance. It is generally acknowledged that an effective immobilization technique is a key step to achieve the construction quality of biosensors.

Results

A novel disposable biosensor was constructed by immobilizing laccase (Lac) with silica spheres on the surface of multi-walled carbon nanotubes (MWCNTs)-doped screen-printed electrode (SPE). Then, it was characterized in morphology and electrochemical properties by scanning electron microscopy (SEM) and cyclic voltammetry (CV). The characterization results indicated that a high loading of Lac and a good electrocatalytic activity could be obtained, attributing to the porous structure, large specific area and good biocompatibility of silica spheres and MWCNTs. Furthermore, the electrochemical sensing properties of the constructed biosensor were investigated by choosing dopamine (DA) as the typical model of phenolic compounds. It was shown that the biosensor displays a good linearity in the range from 1.3 to 85.5 ??M with a detection limit of 0.42 ??M (S/N = 3), and the Michaelis-Menten constant (Km app) was calculated to be 3.78 ??M.

Conclusion

The immobilization of Lac was successfully achieved with silica spheres to construct a disposable biosensor on the MWCNTs-doped SPE (MWCNTs/SPE). This biosensor could determine DA based on a non-oxidative mechanism in a rapid, selective and sensitive way. Besides, the developed biosensor could retain high enzymatic activity and possess good stability without cross-linking reagents. The proposed immobilization approach and the constructed biosensor offer a great potential for the fabrication of the enzyme-based biosensors and the analysis of phenolic compounds.  相似文献   

14.
Novel formaldehyde-sensitive conductometric biosensors have been developed that are based on commercial bacterial formaldehyde dehydrogenase (FDH) from Pseudomonas putida and recombinant formaldehyde dehydrogenase (rFDH) from the yeast Hansenula polymorpha as the bio-recognition elements. The bio-recognition membranes have mono-layer architecture and consist of enzyme cross-linked with albumin and of the cofactors NAD (for FDH-based sensor) or NAD and glutathione (for rFDH-based sensor). This architecture of the biosensor allows the determination of formaldehyde without adding NAD and glutathione to the analyzed sample at every analysis and conducting measurements on the same transducer without cofactors regeneration since the bio-membrane contains it at high concentration (100 mM for NAD and 20 mM for glutathione). The response is linear in the range from 10 to 200 mM of formaldehyde concentration depending on the enzyme used. The dependence of the biosensor output signals on pH and buffer concentration as well as operational/storage stability and selectivity/specificity of the developed conductometric biosensors have been investigated. The relative standard deviation of the intra-sensor response did not exceed 4% and 10% for rFDH- and FDH-based sensors, respectively. The relative standard deviation of the inter-sensor response constituted 20% for both dehydrogenases used. The biosensors have been validated for formaldehyde detection in some real samples of pharmaceutical (Formidron), disinfectant (Descoton forte) and an industrial product (Formalin). A good correlation does exist between the concentration values measured by the conductometric biosensor developed in this work, an enzymatic method, amperometric biosensors developed earlier, and standard analytical methods of formaldehyde determination.  相似文献   

15.
Two amperometric biosensors based on the enzymes cellobiose dehydrogenase (CDH) and quinoprotein-dependent glucose dehydrogenase (GDH), have been applied for monitoring the phenolic content in water samples, collected at different stages of a waste water treatment process, thus representing different cleaning levels of two waste water treatment plants (WWTPs). The biosensor measurements were performed in-field, compared with the results obtained by liquid chromatography-mass spectrometry and were further correlated with the cleaning efficiencies of the WWTPs. The effect of several potentially interfering compounds on the sensor response was also studied.The general purpose of the study was to evaluate the potential use of biosensors, not as quantitative tools for phenol analysis, but rather as screening tools indicating a certain trend, i.e. compounds present or not present, and potential correlation with sample toxicity. It was found that the biosensors and LC-MS results were not quantitatively comparable, however, both sensors could follow the decrease of the phenol content from the influent, primary treated and effluent waters. In addition, the correlation between biosensor inhibition and sample toxicity is discussed.  相似文献   

16.
Amperometric biosensors for the determination of l-malic and l-lactic acids were optimised and used to monitor micro-malolactic fermentations (micro-MLFs) in red wine. Platinum-based probes, coupled with appropriate enzymes, were assembled in electrochemical flow-injection analysis systems. A classical lactate oxidase based sensor was used for l-lactic acid, while l-malic acid was detected via a new biosensor based on the malic enzyme immobilised in a reactor using phenazine methosulphate as mediator. After a preliminary optimisation phase, a recovery study to evaluate the effect of the matrix (red wine) on biosensor performance was carried out by the addition of different standard solutions of the two analytes to the samples. Recoveries from 93 to 100% and from 94 to 102% were observed for l-malic acid and l-lactic acid, respectively. These optimised biosensors were finally employed to monitor micro-MLFs induced by inoculation of two different strains of Oenococcus oeni into red wine. During the micro-MLFs, samples of wine were collected and assayed for l-malic, l-lactic, and citric acids by use of both biosensors and spectrophotometric techniques. In parallel the viable bacterial cell count was also evaluated. The kinetics of bacterial growth, degradation of l-malic and citric acids, and production of l-lactic acid was found to be a function of the strains inoculated.  相似文献   

17.
This work evaluated an amperometric biosensor based on multi‐wall carbon nanotubes (MWCNT), chemically modified with methylene blue (Met) and horseradish peroxidase (HRP), for detection of phenolic compounds. The dependences of the biosensor response due to the enzyme immobilization procedure, HRP amounts, pH and working potential were investigated. The amperometric response for catechol using the proposed biosensor showed a very wide linear response range (1 to 150 μmol L?1), good sensitivity (50 nA cm?2 μmol?1 L), excellent operational stability (after 300 determinations the response remained at 97%) and very good storage stability (lifetime>3 months). Based on all these characteristics, it is possible to affirm that the material is promising for phenol detection due to its good electrochemical response and enzyme stabilization. The biosensor response for various phenolic compounds was investigated.  相似文献   

18.
A combination of the electroactive polymer poly(brilliant green) (PBG) or conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with carbon nanotubes to obtain CNT/PBG and CNT/PEDOT modified carbon film electrodes (CFE) has been investigated as a new biosensor platform, incorporating the enzymes glucose oxidase (GOx) as test enzyme, alcohol oxidase (AlcOx) or alcohol dehydrogenase (AlcDH). The sensing parameters were optimized for all biosensors based on CNT/PBG/CFE, CNT/PEDOT/CFE platforms. Under optimized conditions, both GOx biosensors exhibited very similar sensitivities, while in the case of AlcOx and AlcDH biosensors, AlcOx/CNT/PBG/CFE was found to give a higher sensitivity and lower detection limit. The influence of dissolved O2 on oxidase-biosensor performance was investigated and was shown to be different for each enzyme. Comparisons were made with similar reported biosensors, showing the advantages of the new biosensors, and excellent selectivity against potential interferents was successfully demonstrated. Finally, alcohol biosensors were successfully used for the determination of ethanol in alcoholic beverages.  相似文献   

19.
A simple and reliable method for rapid evaluation of mixtures of phenolic compounds (phenol/chlorophenol, cathecol/phenol, cresol/chlorocresol and phenol/cresol) using a dual amperometric device is described. This new approach is based on the difference between the sensitivity of laccase and tyrosinase for different phenolic compounds. A multichannel potentiostat was used to monitor simultaneously laccase- and tyrosinase-based biosensors, and the data were treated using the partial least squares (PLS) chemometric algorithm. This system showed an excellent efficiency for the resolution of the phenolic mixtures. For example, in the phenol/chlorophenol mixture it was studied the determination of individual species in a concentration range from 1.0×10−6 to 10.0×10−6 mol l−1 obtaining relative standard deviations of 3.5 and 3.1% for phenol and chlorophenol, respectively. The excellent correlation between the estimated and the real concentrations can also be observed by the correlation coefficients (0.9958 and 0.9981 for phenol and chlorophenol, respectively). These results show that proposed methodology can be successfully employed to the simultaneous determination of phenolic compounds in mixtures, even in more diluted solutions.  相似文献   

20.
A whole cell-based amperometric biosensor for highly selective, sensitive, rapid, and cost-effective determination of the organophosphate pesticides fenitrothion and ethyl p-nitrophenol thiobenzenephosphonate (EPN) is discussed. The biosensor comprised genetically engineered p-nitrophenol (PNP)-degrading bacteria Pseudomonas putida JS444 anchoring and displaying organophosphorous hydrolase (OPH) on its cell surface as biological sensing element and carbon paste electrode as the amperometric transducer. Surface-expressed OPH catalyzed the hydrolysis of organophosphorous pesticides such as fenitrothion and EPN to release PNP and 3-methyl-4-nitrophenol, respectively, which were subsequently degraded by the enzymatic machinery of P. putida JS444 through electrochemically active intermediates to the TCA cycle. The electrooxidization current of the intermediates was measured and correlated to the concentration of organophosphates. Operating at optimum conditions, 0.086 mg dry wt of cell operating at 600 mV of applied potential (vs Ag/AgCl reference) in 50 mM citratephosphate buffer, pH 7.5, with 50 μM CoCl2 at room temperature, the biosensor measured as low as 1.4 ppb of fenitrothion and 1.6 ppb of EPN. There was no interference from phenolic compounds, carbamate pesticides, triazine herbicides, or organophosphate pesticides without nitrophenyl substituent. The service life of the biosensor and the applicability to lake water were also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号