首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Trace element impurities in high-purity antimony were determined employing three different methods for the removal of matrix; on Dowex 50WX 8 by adsorption from 0.1 mol/L HF and elution with 4 mol/L HNO3; on Chelex-100 resin (in NH4 + form) Bi, Cd, Co, Cu, and Pb were separated in the presence of tartaric acid at a pH of 9.0 ± 0.1 with subsequent elution with 2 mol/L HCl; these determinations were carried out by GFAAS. The separation of trace impurities from Sb by volatilization of the matrix from H2SO4 and HBr medium was also investigated. ICP-MS was used for the determination in these cases. All the three procedures showed that the removal of the antimony matrix was nearly quantitative (> 99.99%). The recoveries of trace elements were found to be > 95%. The relative standard deviations were in the range 2–7%. Standard addition calibrations were used. The levels of process blanks indicate that with careful optimization, the volatilization procedure coupled with ICP-QMS can be used for trace impurity characterization of 6N+ Sb.  相似文献   

2.
Trace element impurities in high-purity antimony were determined employing three different methods for the removal of matrix; on Dowex 50WX 8 by adsorption from 0.1 mol/L HF and elution with 4 mol/L HNO3; on Chelex-100 resin (in NH4 + form) Bi, Cd, Co, Cu, and Pb were separated in the presence of tartaric acid at a pH of 9.0 ± 0.1 with subsequent elution with 2 mol/L HCl; these determinations were carried out by GFAAS. The separation of trace impurities from Sb by volatilization of the matrix from H2SO4 and HBr medium was also investigated. ICP-MS was used for the determination in these cases. All the three procedures showed that the removal of the antimony matrix was nearly quantitative (> 99.99%). The recoveries of trace elements were found to be > 95%. The relative standard deviations were in the range 2–7%. Standard addition calibrations were used. The levels of process blanks indicate that with careful optimization, the volatilization procedure coupled with ICP-QMS can be used for trace impurity characterization of 6N+ Sb. Received: 25 May 1998 / Revised: 23 September 1998 / Accepted: 26 September 1998  相似文献   

3.
A low pressure microwave assisted vapor phase dissolution procedure for silicon nitride and volatilization of in situ generated SiF4 has been developed using H2SO4, HF and HNO3 for the determination of trace impurities present in silicon nitride. Sample was taken in minimum amount (0.5 mL for 100 mg) of H2SO4 and treated with vapors generated from HF and HNO3 mixture in presence of microwaves in a closed container. An 80 psi pressure with ramp and hold times of 30 min and 60 min respectively, operated twice, resulted in 99.9% volatilization of Si. Matrix free solutions were analyzed for impurities using DRC-ICP-MS. The recoveries of Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Y, Cd, Ba and Pb were between 80 and 100% after volatilization of Si. The blanks were in lower ng g−1 with method detection limits in lower ng g−1 to sub ng g−1 range. The method was applied for the analysis of two silicon nitride samples.  相似文献   

4.
A new radiochemical scheme for the quantitative isolation of Ga, Sc, Hf and La, based on ion exchange and extraction chromatography, was devised, Ga and Sc were selectively retained on a Dowex 50WX2 [H+] column from 10 M HBr at 50°C. Ga was then eluted with ethyl acetate 0.25M in HBr, and scandium with 4M HBr. Hf was separated from 10M HBr at 75°C on a Kel-F column impregnated with tri-n-octylphosphine oxide (TOPO). The lanthamm fraction, after evaporation to dryness, was purified by ion-exchange chromatography in the system: Dowex 50WX8 [H+]−HCl. The effect of accompanying elements, and also the differences in the mechanism of uptake by the resin of various elements from concentrated HBr solution are briefly discussed. The scheme has been used for the determination of these four elements in refractory materials by activation analysis. As this procedure assured practically quantitative isolation of Ga, Sc, Hf and La, the addition of carriers and determination of chemical yield were unnecessary. The radiochemical purities of the respective fractions were as a rule high, and the measurements were performed by NaI(Tl) spectrometry. The detection limits were of the order of fractions of ppm, and could be considerably improved if necessary by increasing the counting time and sample weight.  相似文献   

5.
The indicator radionuclide31Si produced in neutron and deuteron activation analysis for silicon via the reactions30Si(n,) and30Si(d,p), respectively, is specifically separated from the irradiated sample by distillation as31SiF4. In the case of aluminium, the distillation is carried out from a HF(HNO3)H2O2 medium and in the case of molybdenum, niobium, tantalum, titanium and vanadium from a HF/HNO3/HBr/H2SO4 medium. Using liquid scintillation counting, the achievable detection limits for neutron activation analysis are, depending on the type of the matrix, between 4–50 ng/g, and for the deuteron activation analysis of tantalum the detection limit is 5 ng/g.  相似文献   

6.
A flow-injection analysis atomic absorption spectrometric (FIA-AAS) method was developed for the determination of trace amounts of arsenic, selenium and mercury in a proposed estuarine sediment standard reference material (SRM 1646a). The samples were prepared in two manners: a) A wet digestion procedure with HNO3, H2SO4, and HClO4 using a reflux column and b) A microwave-oven digestion procedure utilizing HNO3, H2SO4, and HCl for As and Se, and HNO3 for Hg. Microwave-oven digestion provides results comparable to those found by reflux column digestion and reduces the sample preparation time by a factor of 10. The proposed method employing the microwave-oven digestion procedure coupled with FIA-AAS for As and Se, and FIA-CVAAS for Hg, has detection limits of 0.15 ng As/ml, O.17 ng Se/ml and 0.15 ng Hg/ml.On leave from the Defense Metallurgical Research Laboratory, Hyderabad, India  相似文献   

7.
A simple method for the determination of sub ppm amounts of mercury in various biological materials by neutron activation analysis is described. Irradiated samples were decomposed with H2SO4-fuming HNO3 mixture and mercury selectively isolated by ion exchange chromatography using Dowex 50WX2 [H+] and Dowex 1X4 [Br] columns in HBr medium. Finally the activity of197Hg fixed on an anion exchange resin was measured either with a Ge(Li) or a NaI (Tl) detector. Both the high radiochemical purity of mercury and the practically quantitative recovery were achieved thus eliminating the necessity of determining the chemical yield. The method was used for the determination of mercury in flour, milk, butter, margarine, fish, etc.  相似文献   

8.
A method for the separation of no-carrier-added arsenic radionuclides from the bulk amount of proton-irradiated GeO2 targets as well as from coproduced radiogallium was developed. The radionuclides 69Ge and 67Ga produced during irradiation of GeO2 were used as tracers for Ge and Ga in the experiments. After dissolution of the target the ratio of As(III) to As(V) was determined via thin layer chromatography (TLC). The extraction of radioarsenic by different organic solvents from acid solutions containing alkali iodide was studied and optimized. The influence of the concentration of various acids (HCl, HClO4, HNO3, HBr, H2SO4) as well as of KI was studied using cyclohexane. The optimum separation of radioarsenic was achieved using cyclohexane with 4.75 M HCl and 0.5 M KI and its back-extraction with a 0.1% H2O2 solution. The separation leads to high purity radioarsenic containing no radiogallium and <0.001% [69Ge]Ge. The overall radiochemical yield is 93 ± 3%. The practical application of the optimized procedure in the production of 71As and 72As is demonstrated and batch yields achieved were in the range of 75–84% of the theoretical values.  相似文献   

9.
Zusammenfassung Nach Oxydation der Probe zu H3PO4 mit HNO3/HCl werden die Kationen an einem stark sauren Kationenaustauscher gebunden, mit HCl eluiert und durch AAS bestimmt. Von den häufigsten Verunreinigungen des reinen roten Phosphors werden die Alkali- und Erdalkalielemente sowie die meisten Schwermetalle erfaßt. Fe und As werden nicht abgetrennt, Al nur teilweise. Fe und Al werden durch Extraktion ihrer Oxinate isoliert. As wird aus HBr mit Benzol extrahiert und über die AsH3-Reaktion bestimmt.
Determination of trace impurities in high-purity phosphorus by atomic absorption spectrometry
After oxidizing the sample to H3PO4 with HNO3/HCl, the cations are absorbed on a strong acid cation exchange resin. They are eluted with HCl and are determined by AAS. Under the most commonly found impurities of high-purity red phosphorus, the alkali and alkaline earth elements and most of the heavy metals can be separated. Fe and As are not separated, Al is partially separated. Fe and Al are isolated by extraction of their 8-quinolinol compounds. As is extracted from HBr with benzene and is determined by means of the AsH3-method.
  相似文献   

10.
The recovery of trace elements of ecotoxic importance has been studied on certified soil and sediment reference samples after pressurized digestions with HNO3, HNO3+HF and HNO3+HCl+HF mixtures, respectively. The acid digests have been analyzed by ICP-MS. The results indicate that digestion with nitric acid alone is satisfactory for the recovery of As, Cd, Co, Cu and Zn. Cr and Pb showed lower recoveries with HNO3 alone but addition of HF improved their extraction. With appropriate corrections, ICP-MS can be used for the routine analysis of soils and sediments. These digestion procedures, evaluated based on reference samples, have been used for the trace element characterization of soil samples from the German Environmental Specimen Bank.  相似文献   

11.
The behaviour of the elements As, Ba, Cr, Fe, Eu, Hf, La, Mo, Nb, Pa, Re, Sb, Sc, Sn, Ta, Tc, W, and Zr on Dowex-1X8 in 0.1 to 29.5M HF and mixed solutions of HF and NH4F of different concentration combinations varying for both reagents from 0.1 to 10M has been studied. The influence of the ionic form of Dowex-1 on the distribution of elements has also been examined. The distribution ratio for the mixed solutions are given in form of adsorption contour lines.  相似文献   

12.
A matrix removal procedure has been developed for the determination of trace elements, including As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sn, Tl, Zn and V, in siliceous materials by inductively coupled plasma mass spectrometry (ICP-MS). Soil and sediment samples were dissolved in a mixture of HNO3 and HF in sealed vessels by using a microwave oven. Silicon matrix in the solutions was precipitated as sparingly soluble sodium fluorosilicate (Na2SiF6) by adding 0.5 mL of 300 mg mL−1 NaCl solution. Simultaneous precipitation of sodium and silicon was achieved in highly acidic solutions containing 30–40% (v/v) HNO3. A mixture of methanol and nitric acid afforded back-extraction of the trace elements without significant dissolution of the Na2SiF6. Samples were analyzed by ICP-MS for trace elements and residual silicon. Calibration was made by aqueous multi-element standard solutions. Up to 95% of the silicon was successfully removed yielding solutions suitable for introduction to ICP-MS. The method was validated by analysis of two NIST certified reference materials; SRM 2711 (Montana Soil) and SRM 2704 (Buffalo River Sediment). Accurate results were obtained for all elements, including those for As, Hg and Se that suffer from losses due to the presence of their volatile species when silicon was converted to volatile SiF4 via heat-assisted evaporation to dryness. The recoveries from the SRM samples varied between 80% (Cr) and 109% (Hg). No significant interferences were observed from molecular ions of chloride and residual sodium on 75As, 63Cu, 60Ni, 77Se and 51V. Correspondence: Zikri Arslan, Department of Chemistry, Jackson State University, Jackson, MS 39217, USA  相似文献   

13.
The conditions necessary for the complete decomposition of six organic arsenic compounds, namely methylarsonic acid (MMAA), dimethylarsinic acid (DMAA), trimethylarsine oxide, tetramethylarsonium iodide, arsenocholine bromide (AsC) and arsenobetaine (AB), were investigated. The degree of decomposition of the arsenic compounds was monitored using a hydride generation (HYD) technique, because the response from this system depends strongly on the chemical species of arsenic, with inorganic arsenic (the expected product from these decomposition experiments) giving a much more intense HYD signal than the organic arsenic compounds. The arsenic compounds were decomposed by heating them with three types of acid mixture, namely HNO3? HClO4, HNO3? HClO4? HF, or HNO3? HClO4? H2SO4. Both MMAA and DMAA were decomposed completely using any of the mixed acids at a decomposition temperature of 200 °C or higher. The HNO3? HClO4? H2SO4 mixture was the most effective for decomposing AsC and AB, which are the most difficult compounds among all types of organic arsenic compound to decompose and render inorganic. The complete decomposition of AB was only achieved, however, when the temperature was 320 °C or higher, and the sample was evaporated to dryness. When the residue from this treatment was examined by high‐performance liquid chromatography combined with inductively coupled plasma atomic emission spectrometry, all of the arsenic was found to be present as arsenic(V). The optimized conditions (HNO3? HClO4? H2SO4 at 320 °C) for decomposing AB were then used to determine the total amount of arsenic in marine organisms known to contain AB. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Understanding the transport of trace elements through a coal-fired power plant requires reliable analytical methods for these elements in all the ingoing and outgoing mass streams. Coal and different kinds of ashes comprise the most abundant mass streams in such a plant. As a continuation of our previous work, we have optimised a digestion method for the AAS determination of heavy metals in coal samples. It has become evident that complete dissolution of metals in coal samples and accurate results in subsequent analysis can be obtained by means of applying pressurised digestion under microwave heating. The combination of HNO3 (conc.) and HF (conc.) in the volume ratio of 50 : 1 attacked the sample well enough, and good recoveries for all the metals studied were obtained. Surprisingly good results were obtained also when HNO3 alone was used as the digestion acid. Received: 18 June 1998 / Revised: 23 September 1998 / Accepted: 24 September 1998  相似文献   

15.

The behavior of group-4 homologs Zr and Hf on extraction-chromatographic sorbents LN resin and TRU resin in mixtures of HF and HNO3 is considered. Distribution coefficients of the elements in the mixtures of 5·10−4 M–1 M HF and 0.01 M–5 M HNO3 are determined. Strong retention of both elements was found on LN resin in the range of concentrations c(HF) ≤ 0.01 M for all concentrations of HNO3. Retention tends to gradually disappear while increasing c(HF) to 0.5 M. On TRU resin retention is observed only in solutions with c(HNO3) ≥ 2 M and c(HF) ≤ 0.01 M. The possibility of separating Zr(IV) and Hf(IV) on LN resin is illustrated in two different acid mixtures, whereas their separation on TRU resin under the conditions studied in this work is difficult. The results obtained can be used to isolate analytes from multicomponent mixtures during analytical tasks, as well as to separate them from each other.

  相似文献   

16.
For the major component analysis of Mo-Si (-B) alloys by ICP-AES, an appropriate dissolution method is necessary. The general procedure using a HNO3-HF mixture cannot be applied for Mo-Si (-B) alloys due to Si volatilization followed by violent reaction and due to MoO2 precipitation in the preparation of a Mo standard solution from metallic Mo. Good results were obtained with a mixture of 10 mL H2SO4, 1 mL HNO3, 2 mL HF and 12 mL H2O for Mo-Si (-B) alloys. The samples were completely dissolved at room temperature without any losses. A sequential correction method is also suggested to correct several errors in ICP-AES analysis such as ?uctuation in the emission intensities, spectral interferences, non-spectral interferences and blank values.  相似文献   

17.
de Lima BB  Conte RA  Nunes CA 《Talanta》2003,59(1):89-93
Inductively coupled plasma optical emission spectrometry (ICP-OES) was applied to the analysis of major and minor elements of Ni-Nb alloys obtained by aluminothermic reduction process. Digestion of samples was made using a mixture of HF+HNO3. Minor and trace elements were determined without matrix separation. The precision for all constituents was <3%. Recoveries for the analyte-spiked samples were 95%.  相似文献   

18.
《Analytical letters》2012,45(7):1753-1763
Abstract

A simple procedure for the determination of trace amounts of indium in sphalerites has been developed. the sample is dissolved by combined action of concentrated HC1 and HNO3. Indium is separated by ether extraction from a 4 M HBr solution. the organic phase is evaporated and the residue is dissolved in acetate-bromide ionic medium, where indium is directly measured by stripping potentiometry.  相似文献   

19.
ICP-MS has been used for the determination of over 30 geochemically significant trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, Hf, Ta, Pb, Th, U and REEs) in anorthosites and related rock reference samples. Open acid digestion, pressure decomposition using HF, HNO3 and HClO4, and a fusion method using lithium metaborate and subsequent dissolution in dil. HNO3 were adopted for the decomposition of these rock samples before analysis. The dissolution problems and interference effects are discussed. Rh and Bi were used as internal standards. The first set of data on several rare earths and other trace elements in the Russian anorthosite reference sample, MO-6 are presented along with data on other samples. The data are compared with the available data. The results obtained with different dissolution methods were found to be in good agreement for the majority of the trace elements. The accuracy and precision achieved (better than 6% RSD in most cases) suggested that the data obtained by ICP-MS for such samples are best suited for geochemical interpretations.  相似文献   

20.
The measurement of trace-element concentration in soil, sediment and waste, is generally a combination of a digestion procedure for dissolution of elements and a subsequent measurement of the dissolved elements. “Partial” and “total” digestion methods can be used in environmental monitoring activities. To compare measurement results obtained by different methods, it is crucial to determine and to maintain control of the bias of the results obtained by these methods. In this paper, ICP-MS results obtained after matrix digestion with modified aqua regia (HCl+HNO3+H2O2) method and two “total” digestion methods (microwave aqua regia+HF and HNO3+HF) are compared with those obtained by instrumental neutron activation analysis, a non-destructive analytical method for the determination of the total mass concentrations of inorganic components in environmental matrices. The comparison was carried out on eight agricultural soil samples collected in one test area and measured by k0-INAA and ICP-MS to determine As, Co, Cr, Sb and Zn mass concentration. The bias of results for As, Cd, Co, Cr, Cu, Ni, Pb, Sb and Zn of the three digestion methods were assessed using selected measurement standards. This paper highlights that the digestion procedure is an integral part of the measurement and can affect the measurement result in environmental analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号