首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isothermal, planar Poiseuille flow of a weakly compressible Oldroyd-B fluid is considered under the assumption that the density of the fluid obeys a linear equation of state. A perturbation analysis for all the primary flow variables is carried out with the isothermal compressibility serving as the perturbation parameter. The sequence of partial differential equations which results from the perturbation procedure is solved analytically up to second order. The effects of the compressibility parameter, the aspect ratio, and the Weissenberg number are discussed. In particular, it is demonstrated that compressibility has a significant effect on the transverse velocity and the first normal stress difference.  相似文献   

2.
The isothermal annular Poiseuille flow of a weakly compressible Newtonian liquid with constant shear and bulk viscosities is considered. A linear equation of state is assumed and a perturbation analysis in terms of the primary flow variables is performed up to the first order using the isothermal compressibility as the perturbation parameter. The effects of compressibility, the bulk viscosity, the radii ratio, the aspect ratio, and the Reynolds number on the velocity and pressure fields are studied.  相似文献   

3.
在等熵方程为压力是密度的任意单值函数形式情况下 ,分析了R T(Rayleigh Taylor)不稳定性中流体可压缩性的作用。在没有边界效应的条件下所作的分析表明 :在重力场作用下流体可压缩性形成的密度分布是R T不稳定性中的致稳因素 ,而扰动流体的膨胀 (收缩 )效应助长R T不稳定性的发展 ;上层重流体的可压缩性是稳定因素 ,而下层轻流体的可压缩性是失稳因素。从扰动发展驱动力和扰动带动的等效质量两个方面对该结论的物理机制进行了分析。  相似文献   

4.
This paper generalizes the single-shell Kidder's self-similar solution to the double-shell one with a discontinuity in density across the interface. An isentropic implosion model is constructed to study the Rayleigh-Taylor instability for the implosion compression. A Godunov-type method in the Lagrangian coordinates is used to compute the one-dimensional Euler equation with the initial and boundary conditions for the double-shell Kidder's self-similar solution in spherical geometry. Numerical results are obtained to validate the double-shell implosion model. By programming and using the linear perturbation codes, a linear stability analysis on the Rayleigh-Taylor instability for the double-shell isentropic implosion model is performed. It is found that, when the initial perturbation is concentrated much closer to the interface of the two shells, or when the spherical wave number becomes much smaller, the modal radius of the interface grows much faster, i.e., more unstable. In addition, from the spatial point of view for the compressibility effect on the perturbation evolution, the compressibility of the outer shell has a destabilization effect on the Rayleigh-Taylor instability, while the compressibility of the inner shell has a stabilization effect.  相似文献   

5.
The axisymmetric extrudate swell flow of a compressible Herschel–Bulkley fluid with wall slip is solved numerically. The Papanastasiou-regularized version of the constitutive equation is employed, together with a linear equation of state relating the density of the fluid to the pressure. Wall slip is assumed to obey Navier’s slip law. The combined effects of yield stress, inertia, slip, and compressibility on the extrudate shape and the extrudate swell ratio are analyzed for representative values of the power-law exponent. When the Reynolds number is zero or low, swelling is reduced with the yield stress and eventually the extrudate contracts so that the extrudate swell ratio reaches a minimum beyond which it starts increasing asymptotically to unity. Slip suppresses both swelling and contraction in this regime. For moderate Reynolds numbers, the extrudate may exhibit necking and the extrudate swell ratio initially increases with yield stress reaching a maximum; then, it decreases till a minimum corresponding to contraction, and finally, it converges asymptotically to unity. In this regime, slip tends to eliminate necking and may initially cause further swelling of the extrudate, which is suppressed if slip becomes stronger. Compressibility was found to slightly increase swelling, this effect being more pronounced for moderate yield stress values and wall slip.  相似文献   

6.
We consider the time-dependent shear flow of an Oldroyd-B fluid with slip along the fixed wall. Slip is allowed by means of a generic slip equation predicting that the shear stress is a non-monotonic function of the velocity at the wall. The complete one-dimensional stability analysis to one-dimensional disturbances is carried out and the corresponding neutral stability diagrams are constructed. Asymptotic results for large values of the elasticity number and finite element calculations are also presented. The instability regimes are within or coincide with the negative-slope regime of the slip equation. The numerical calculations agree with the linear stability results when the size of the initial perturbation is small. Large perturbations may destabilize a linearly stable steady state, leading to a periodic solution. The period and the amplitude of the periodic solutions increase with elasticity. Received: 19 June 1997 Accepted: 22 September 1997  相似文献   

7.
" Analysis is performed to study the slip effects on the peristaltic flow of non-Newtonian fluid in a curved channel with wall properties. The resulting nonlinear partial differential equations are transformed to a single ordinary differential equation in a stream function by using the assumptions of long wavelength and low Reynolds number. This differential equation is solved numerically by employing the built-in routine for solving nonlinear boundary value problems (BVPs) through the software Mathematica. In addition, the analytic solutions for small Deborah number are computed with a regular perturbation technique. It is noticed that the symmetry of bolus is destroyed in a curved channel. An intensification in the slip effect results in a larger magnitude of axial velocity. Further, the size and circulation of the trapped boluses increase with an increase in the slip parameter. Different from the case of planar channel, the axial velocity profiles are tilted towards the lower part of the channel. A comparative study between analytic and numerical solutions shows excellent agreement.  相似文献   

8.
The combined effects of weak compressibility and viscoelasticity in steady, isothermal, laminar axisymmetric Poiseuille flow are investigated. Viscoelasticity is taken into account by employing the Oldroyd-B constitutive model. The fluid is assumed to be weakly compressible with a density that varies linearly with pressure. The flow problem is solved using a regular perturbation scheme in terms of the dimensionless isothermal compressibility parameter. The sequence of partial differential equations resulting from the perturbation procedure is solved analytically up to second order. The two-dimensional solution reveals the effects of compressibility and the other dimensionless numbers and parameters in the flow. Expressions for the average pressure drop, the volumetric flow rate, the total axial stress, as well as for the skin friction factor are also derived and discussed. The validity of other techniques used to obtain approximate solutions of weakly compressible flows is also discussed in conjunction with the present results.  相似文献   

9.
10.
Nonsingular, stressed, dislocation (wall) profiles are shown to be 1-d equilibria of a non-equilibrium theory of Field Dislocation Mechanics (FDM). It is also shown that such equilibrium profiles corresponding to a given level of load cannot generally serve as a travelling wave profile of the governing equation for other values of nearby constant load; however, one case of soft loading with a special form of the dislocation velocity law is demonstrated to have no ‘Peierls barrier’ in this sense. The analysis is facilitated by the formulation of a 1-d, scalar, time-dependent, Hamilton-Jacobi equation as an exact special case of the full 3-d FDM theory accounting for non-convex elastic energy, small, Nye-tensor-dependent core energy, and possibly an energy contribution based on incompatible slip. Relevant nonlinear stability questions, including that of nucleation, are formulated in a non-equilibrium setting. Elementary averaging ideas show a singular perturbation structure in the evolution of the (unsymmetric) macroscopic plastic distortion, thus pointing to the possibility of predicting generally rate-insensitive slow response constrained to a tensorial ‘yield’ surface, while allowing fast excursions off it, even though only simple kinetic assumptions are employed in the microscopic FDM theory. The emergent small viscosity on averaging that serves as the small parameter for the perturbation structure is a robust, almost-geometric consequence of large gradients of slip in the dislocation core and the persistent presence of a large number of dislocations in the averaging volume. In the simplest approximation, the macroscopic yield criterion displays anisotropy based on the microscopic dislocation line and Burgers vector distribution, a dependence on the Laplacian of the incompatible slip tensor and a nonlocal term related to a Stokes-Helmholtz-curl projection of an ‘internal stress’ derived from the incompatible slip energy.  相似文献   

11.
The Stokes flow through a wavy or corrugated channel with surface slip is studied. The correct Navier's partial slip condition is applied and perturbation solutions about the small amplitude to channel width ratio are obtained. As in Stokes slip flow over a sphere, the resistance is not zero even when slip is infinite. The resistance (due to the interaction of waviness and slip) is larger when the corrugations of the two plates are out of phase than that when they are in phase.  相似文献   

12.
This paper deals with intrinsic effects of compressibility, i.e. with dilatation fluctuations in response to pressure fluctuations. Three different types of turbulent flows are considered in more detail: homogeneous turbulent shear flow, wall-bounded turbulent shear flow and shock/turbulence interaction. A survey of the present knowledge in this field, mainly based on DNS data, is given. Using the linear inviscid perturbation equations a direct link between fluctuations of dilatation and of velocity in the direction of mean shear is presented for homogeneous shear flow. This relation might form the basis for a more universal pressure-dilatation model. It is conjectured that the insignificance of intrinsic compressibility effects in wall-bounded supersonic shear flow is mainly due to the impermeability constraint of the wall. To this end, a linear stability analysis of supersonic channel flow along cooled, but permeable walls has been performed based on Coleman et al.'s [5] mean flow data. It shows an increase in the moduli of eigenfunctions related to compressibility, like pressure, and in moduli of quantities derived from eigenfunctions such as ‘pressure dilatation’ and squared dilatation. Although these results do not prove our hypothesis they provide hints in this direction. Shock/turbulence interaction is viewed as a source of compressibility. Former DNS data of Hannappel and Friedrich [10] for shock/isotropic turbulence interaction showing the effect of compressibility on the amplification of fluctuations are interpreted based on linear perturbation equations.  相似文献   

13.
Creeping channel flows of compressible fluids subject to wall slip are widely encountered in industries. This paper analyzes such flows driven by pressure in planar as well as circular channels. The analysis elucidates unsteady flows of Newtonian fluids subject to the Navier slip condition, followed by steady flows of viscoplastic fluids, in particular, Herschel–Bulkley fluids and their simplifications including power law and Newtonian fluids, that slip at wall with a constant coefficient or a coefficient inversely proportional to pressure. Under the lubrication assumption, analytical solutions are derived, validated, and discussed over a wide range of parameters. Analysis based on the derived solutions indicates that unsteadiness alters cross-section velocity profiles. It is demonstrated that compressibility of the fluids gives rise to a concave pressure distribution in the longitudinal direction, whereas wall slip with a slip coefficient that is inversely proportional to pressure leads to a convex pressure distribution. Energy dissipation resulting from slippage can be a significant portion in the total dissipation of such a flow. A distinctive feature of the flow is that, in case of the pressure-dependent slip coefficient, the slip velocity increases rapidly in the flow direction and the flow can evolve into a pure plug flow at the exit.  相似文献   

14.
An equation for the average internal energy of a gas in a field of acoustic turbulence is obtained by the method of perturbation theory. It is shown that, in addition to the characteristic increase in the coefficient of thermal conductivity, acoustic turbulence leads to heating of the gas through compressibility and heat-conduction effects. At large Mach and Péelet numbers the heating has an exponential character with time. An expression determining the absorption of acoustic vibrations in a gas is obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gasa, No. 1, pp. 183–187, January–February, 1978.  相似文献   

15.
In the tensile loading of sheet metals made from some polycrystalline aluminum alloys, a single deformation band appears inclined to the elongation axis in the early stage of deformation, and symmetric double bands are observed in the later stage. This evolution of spatial characteristics of such an unstable plastic flow pattern in a polycrystalline aluminum alloy has been analyzed by a perturbation method. A small number of slip modes are taken to describe the tensile strain. A rate-dependent constitutive equation is used for each slip mode to account for the interaction between dislocations and solute atoms in dynamic strain aging. Unconstrained and constrained models are used to impose appropriate loading conditions at the early and later deformation stages, respectively. Both plane-strain and plane-stress cases are considered. It is found out that the change of boundary conditions and material inhomogeneity during the course of plastic deformation are closely related to the evolution of spatial characteristics of shear band (the Portevin–Le Chatelier band) patterns observed in experiments.  相似文献   

16.
An equation of the gas-kinetic theory of lubrication is obtained under the assumption of incompressibility of the gas on the basis of solution of the Boltzmann equation by the moment method with a special approximating function. In the limit of a small Knudsen number calculated using the minimal gap, the equation goes over into Reynolds's wellknown equation. Reynolds's problem of a lubricating layer of gas between two closely spaced planes is considered. In the limit of a small Knudsen number, agreement with the well-known solution of the hydrodynamic theory is obtained. A comparison is made with the solution obtained by the hydrodynamic method with slip boundary conditions under neglect of the compressibility of the gas.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 161–166, January–February, 1984.I thank L. P. Smirnov for constant interest in the work, and also the participants of G. I. Petrov's seminar for helpful discussions.  相似文献   

17.
In this paper we solve the time-dependent shear flow of an Oldroyd-B fluid with slip along the fixed wall. We use a non-linear slip model relating the shear stress to the velocity at the wall and exhibiting a maximum and a minimum. We assume that the material parameters in the slip equation are such that multiple steady-state solutions do not exist. The stability of the steady-state solutions is investigated by means of a one-dimensional linear stability analysis and by numerical calculations. The instability regimes are always within or coincide with the negative-slope regime of the slip equation. As expected, the numerical results show that the instability regimes are much broader than those predicted by the linear stability analysis. Under our assumptions for the slip equation, the Newtonian solutions are stable everywhere. The interval of instability grows as one moves from the Newtonian to the upper-convected Maxwell model. Perturbing an unstable steady-state solution leads to periodic solutions. The amplitude and the period of the oscillations increase with elasticity.  相似文献   

18.
Analytical approximations for stick-slip vibration amplitudes   总被引:1,自引:0,他引:1  
The classical “mass-on-moving-belt” model for describing friction-induced vibrations is considered, with a friction law describing friction forces that first decreases and then increases smoothly with relative interface speed. Approximate analytical expressions are derived for the conditions, the amplitudes, and the base frequencies of friction-induced stick-slip and pure-slip oscillations. For stick-slip oscillations, this is accomplished by using perturbation analysis for the finite time interval of the stick phase, which is linked to the subsequent slip phase through conditions of continuity and periodicity. The results are illustrated and tested by time-series, phase plots and amplitude response diagrams, which compare very favorably with results obtained by numerical simulation of the equation of motion, as long as the difference in static and kinetic friction is not too large.  相似文献   

19.
The work presented consists essentially of two parts: the first deals with the development of a non-linear constitutive equation for a three-dimensional viscoelastic material with instantaneous and time dependent compressibility; the second deals with the solution of some specific wave propagation problems for three simple three-dimensional geometries. The constitutive equation is based on the existence of elastic and creep potentials and is expressed in terms of single memory integrals with non-linear kernels. The wave propagation problems are solved by numerical integration along the characteristics of the governing equations. The primary conclusion drawn deals with the effect of time dependent compressibility on the dynamic stress, strain and velocity fields. Results indicate that the dynamic response of even slightly time dependent compressible materials varies dramatically from those assumed to have only an instantaneous elastic compressibility.  相似文献   

20.
A time-implicit numerical method for solving unsteady incompressible viscous flow problems is introduced. The method is based on introducing intermediate compressibility into a projection scheme to obtain a Helmholtz equation for a pressure-type variable. The intermediate compressibility increases the diagonal dominance of the discretized pressure equation so that the Helmholtz pressure equation is relatively easy to solve numerically. The Helmholtz pressure equation provides an iterative method for satisfying the continuity equation for time-implicit Navier–Stokes algorithms. An iterative scheme is used to simultaneously satisfy, within a given tolerance, the velocity divergence-free condition and momentum equations at each time step. Collocated primitive variables on a non-staggered finite difference mesh are used. The method is applied to an unsteady Taylor problem and unsteady laminar flow past a circular cylinder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号