首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective-controlled structure and shape of LaVO(4) nanocrystals were successfully synthesized by a simple hydrothermal method without the presence of catalysts or templates. It was found that tuning the pH of the growth solution was a crucial step for the control of the structure transformation, that is, from monoclinic (m-) to tetragonal (t-) phase, and morphology evolution of LaVO(4) nanocrystals. Further studies demonstrated that the morphology of the product had a strong dependence on the initial lanthanum sources. In the La(NO(3))(3) or LaCl(3) reaction system, pure t-LaVO(4) nanorods with uniform diameters about 10 nm could be obtained. But when using La(2)(SO(4))(3) as the lanthanum source, we can get t-LaVO(4) nanowiskers with broomlike morphology. The detailed systematic study had shown that a special dissolution-recrystallization transformation mechanism as well as an Ostwald ripening process was responsible for the phase control and anisotropic morphology evolution of the LaVO(4) nanocrystals. As a result, the controlled synthesis of m- and t-LaVO(4) not only has great theoretical significance in studying the polymorph control and selective synthesis of inorganic materials but also benefits the potential applications based on LaVO(4) nanocrystals owing to the unusual luminescent properties induced by structural transformation.  相似文献   

2.
Sheu CF  Pillet S  Lin YC  Chen SM  Hsu IJ  Lecomte C  Wang Y 《Inorganic chemistry》2008,47(23):10866-10874
t-{Fe(abpt)(2)[N(CN)(2)](2)} [abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole] is an intriguing spin-crossover system that crystallizes in two polymorphs. Polymorph A is paramagnetic; its crystal structure consists of a single molecule located at the center of inversion symmetry. Polymorph B, on the other hand, exhibits a rather complicated two-step-like spin transition; its crystal structure consists of two symmetry-independent molecules. The crystal structure of polymorph B has been derived in the different spin states: above the high-temperature step (300 K), between the two steps (90 K), below the incomplete low-temperature step (50 K), in the light-induced metastable state (15 K), in the thermally quenched metastable state (15 K), and after relaxation from the quenched state (15 K). The correlation between the structure and magnetic properties is precisely established, allowing the complicated magnetic behavior of polymorph B to be well understood. A unique order-disorder phase transition, resulting in a modulation of the metastable state structures, is detected for the first time on such spin-transition compounds. The modulation of the structure originates from a particular ordering of the dicyanamide ligand at one of the two Fe sites.  相似文献   

3.
The reaction of ArPO(3)H(2) (Ar = 2,4,6-iPr(3)-C(6)H(2)) with Cd(CH(3)COO)(2).2H(2)O using various co-ligands such as methanol, dimethylformamide (DMF) and 3,5-dimethylpyrazole (DMPZH) resulted in the formation of tetranuclear assemblies [Cd(4)(ArPO(3))(2)(ArPO(3)H)(4)(CH(3)OH)(4)].3(CH(3)OH) (1), [Cd(4)(ArPO(3))(2)(ArPO(3)H)(4)(DMF)(4)].3(DMF) (2) and [Cd(4)(ArPO(3))(2)(ArPO(3)H)(4)(DMF)(2)(DMPZH)(2)].2(DMF).2(H(2)O) (3). In all of these compounds the tetranuclear cadmium array, containing two five-coordinate and two six-coordinate cadmium atoms, is held together by two mu(4) capping [ArPO(3)](2-) and four anisobidentate mu(2) [ArPO(2)(OH)](-) ligands. Each cadmium atom is bound to an additional ancillary ligand. The reaction of ArPO(3)H(2) with Cd(CH(3)COO)(2).2H(2)O in the presence of the chelating ligand 2,2'-bipyridine (bipy) leads to the exclusive formation of the dinuclear assembly [Cd(2)(ArPO(3)H)(4)(bipy)(2)].(CH(3)OH)(H(2)O) (4). The latter contains an eight-membered Cd(2)P(2)O(4) inorganic ring formed as a result of the bridging coordination action of two anisobidentate mu(2) [ArPO(2)(OH)](-) ligands. Each cadmium atom is bound by one chelating bipy and one monodentate [ArPO(2)(OH)](-) ligands. Use of four equivalents of 3,5-dimethylpyrazole leads to the formation of the mononuclear derivative [Cd(ArPO(3)H)(2)(DMPZH)(4)] (5). The molecular structure of the latter comprises of a central cadmium atom surrounded by six monodentate ligands. Four of these are neutral pyrazole ligands that occupy the equatorial plane; the remaining two are anionic phosphinate ligands which are present trans to each other. The thermal analysis of 1 and 4 reveals that the char residue obtained at 600 degrees C consists predominantly of Cd(2)P(2)O(7).  相似文献   

4.
Several intermediates and final products of the reactions of [Rh(2)(mu-CH(3)COO)(4)(CH(3)OH)(2)] with a tridentate ligand bis(2-pyridylmethyl)amine (bpa) and bidentate 2-(aminomethyl)pyridine (amp) have been isolated, and the chelation processes of these ligands to the dirhodium(II) center are discussed. The reaction of a 2 equiv amount of bpa in chloroform afforded three products, [Rh(2)(mu-CH(3)COO)(2)(eta(1)-CH(3)COO)(bpa)(2)](+) ([1]+), C(2)-[Rh(2)(mu-CH(3)COO)(2)(bpa)(2)](2+) ([2a](2+)), and C(s)-[Rh(2)(mu-CH(3)COO)(2)(bpa)(2)](2+) ([2b](2+)), where C(2) and C(s) denote the molecular symmetry of the two geometrical isomers. X-ray crystallography revealed that [1](+) contains ax-eq chelated bidentate and ax-eq-eq tridentate bpa and that [2a](2+) and [2b](2+) have two ax-eq-eq tridentate bpa ligands (ax denotes the site trans to the Rh-Rh bond, and eq, the site perpendicular to it). The reaction is initiated by almost instantaneous monodentate or inter-Rh(2)-unit bridging coordination of bpa at the ax sites, which is followed by very slow ax-eq chelate formation and then ultimate ax-eq-eq tridentate coordination. The reaction of [Rh(2)(mu-CH(3)COO)(4)(CH(3)OH)(2)] with amp in 1:2 ratio in chloroform initially gives an insoluble polymer in which amp interconnects the ax sites of the dirhodium(II) units. Further reactions afforded [Rh(2)(mu-CH(3)COO)(2)(eta(1)-CH(3)COO)(amp)(2)](+) ([4](+)) and [Rh(2)(mu-CH(3)COO)(2)(amp)(2)](2+) ([5](2)(+)). The X-ray structural studies show that [4](+) has one ax-eq and one eq-eq chelate and [5](2)(+) two eq-eq chelates. More rigid tridentate ligands 2,2':6',2"-terpyridine (tpy) and 4'-chloro-2,2':6',2"-terpyridine (Cl-tpy) have been introduced at ax sites in a monodentate mode ([Rh(2)(mu-CH(3)COO)(4)(tpy)(2)] (8) and [Rh(2)(mu-CH(3)COO)(4)(Cl-tpy)(2)] (9)). While the Rh-Rh distances of these complexes and [Rh(2)(mu-CH(3)COO)(2)(2,2'-bipyridine)(2)(py)(2)](2+) ([7](2)(+)) are practically unchanged (2.56-2.60 A) except for 8 and 9 (2.4 A), the Rh-N(ax) distances range from 2.11 to 2.35 A. Relatively short distances are found for the compounds with ax-eq or ax-eq-eq chelates (<2.22 A). Longest distances (2.32-2.35 A) found for 8 and 9 may be due to the steric effect. The distances of other complexes fall in the normal region. The visible band of the pi*(Rh-Rh) --> sigma*(Rh-Rh) transition in solid-state reflectance spectra shows a red-shift as the Rh[bond]N(ax) distances becomes longer.  相似文献   

5.
Analogues of the ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(methylene)bis((pyridin-2-ylmethyl)azanediyl)diethanol (CH(3)H(3)L1) are described. Complexation of these analogues, 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol (CH(3)HL2), 4-bromo-2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (BrHL2), 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (NO(2)HL2) and 4-methyl-2,6-bis(((2-phenoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (CH(3)HL3) with zinc(II) acetate afforded [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(BrL2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(CH(3)L3)(CH(3)COO)(2)](PF(6)), in addition to [Zn(4)(CH(3)L2)(2)(NO(2)C(6)H(5)OPO(3))(2)(H(2)O)(2)](PF(6))(2) and [Zn(4)(BrL2)(2)(PO(3)F)(2)(H(2)O)(2)](PF(6))(2). The complexes were characterized using (1)H and (13)C NMR spectroscopy, mass spectrometry, microanalysis, and X-ray crystallography. The complexes contain either a coordinated methyl- (L2 ligands) or phenyl- (L3 ligand) ether, replacing the potentially nucleophilic coordinated alcohol in the previously reported complex [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)). Functional studies of the zinc complexes with the substrate bis(2,4-dinitrophenyl) phosphate (BDNPP) showed them to be competent catalysts with, for example, [Zn(2)(CH(3)L2)](+), k(cat) = 5.70 ± 0.04 × 10(-3) s(-1) (K(m) = 20.8 ± 5.0 mM) and [Zn(2)(CH(3)L3)](+), k(cat) = 3.60 ± 0.04 × 10(-3) s(-1) (K(m) = 18.9 ± 3.5 mM). Catalytically relevant pK(a)s of 6.7 and 7.7 were observed for the zinc(II) complexes of CH(3)L2(-) and CH(3)L3(-), respectively. Electron donating para-substituents enhance the rate of hydrolysis of BDNPP such that k(cat)p-CH(3) > p-Br > p-NO(2). Use of a solvent mixture containing H(2)O(18)/H(2)O(16) in the reaction with BDNPP showed that for [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), as well as [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)), the (18)O label was incorporated in the product of the hydrolysis suggesting that the nucleophile involved in the hydrolysis reaction was a Zn-OH moiety. The results are discussed with respect to the potential nucleophilic species (coordinated deprotonated alcohol versus coordinated hydroxide).  相似文献   

6.
A series of Zn(II), Cd(II), Co(II), Co(III) and Mn(III) complexes with the Schiff base [(CH3)2NCH2CH2N=CHC6H3(OH)(OMe)], LH, derived from 2-dimethylaminoethylamine and o-vanillin, has been synthesised and structures of all the products have been established by X-ray crystallography. In the cases of zinc and cadmium, dimeric complexes [Zn(LH)2(NCS)] [Zn2(L)(mu(1,1)-CH3COO)(NCS)3] (1), [Cd2(L)2(Cl)2] (2) and [Cd2(L)2(NCS)2] (3), and for cobalt and manganese, monomeric complexes [Co(LH)2(NCS)]2 [Co(NCS)4] (4), [Co(LH)2(NCS)]ClO4 (5), [Co(L)(N3)(o-vanillinate)] x 0.5 MeOH (6) and [Mn(LH)2(MeOH)2](ClO4)3 (7), are formed with various terminal ligands. All the complexes have been characterised by elemental analysis and IR spectra. UV-Vis and NMR spectroscopy, magnetic, and electrochemical studies, were also carried out where feasible. The Schiff base functions as a bi-, tri- or tetra-dentate chelating agent and coordinates via the protonated or deprotonated phenolic oxygen, amine and imine nitrogens, and only in case of 1 with the methoxy oxygen atoms, to the metal ion leading to the formation of mono- or bi-metallic complexes.  相似文献   

7.
Addition of 2 equiv of a sigma-donor ligand (L = pyridine, 4-picoline, or quinoline) to complexes of the type [W(NPh)(eta(4)-arene)(o-(Me3SiN)2C6H4)] (arene = CH3CH2C6H5 (3), CH3CH2CH2C6H5 (4)) gave the W(IV)L2 compounds, [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)2] (5), [W(NPh)(o-(Me3SiN)2C6H4)(p-C6H7N)2] (6), and [W(NPh)(o-(Me3SiN)2C6H4)(C9H7N)2] (7). Synthesis of compounds 5 and 6 by Na degrees reduction of [W(NPh)(o-(Me3SiN)2C6H4)Cl2] in the presence of 3 equiv of L (L = 5, pyridine or 6, 4-picoline) is also presented. Compounds 5, 6, and 7 display hindered rotation of the donor ligands about the W-N bonds, resulting from a steric interaction with the Me3Si groups of the diamide ligand. The coordinative unsaturation of 5 and 6 has also been explored. Compounds 5 and 6 readily react with either CO and PMe3 to generated the six coordinate complexes [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)2(CO)] (8a), [W(NPh)(o-(Me3SiN)2C6H4)(C6H7N)2(CO)] (8b), [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)(PMe3)2] (10a), and [W(NPh)(o-(Me3SiN)2C6H4)(C6H7N)(PMe3)2] (10b), respectively.  相似文献   

8.
A series of pyridine-substituted derivatives of octaacetatotetraplatinum(II), [Pt4(CH3COO)8-n(L)2n]n+ (L= 4-dimethylaminopyridine (dmap), pyridine (py), 4-cyanopyridine (cpy); n = 1-4) were prepared, and the tetra- and octasubstituted forms (n = 2 and 4) were isolated. 1HNMR spectra showed that this type of cluster undergoes a comproportionation reaction. Reactions between clusters in which n = 0 and 2, n = 0 and 4, and n = 2 and 4 afforded Pt4 clusters with n = 1, 2, and 3, respectively, as a main product in acetonitrile. The dmap-substituted clusters, trans-[Pt4(CH3COO)6(dmap)4](ClO4)2 x 3CH3NO2 (3a(ClO4)2 x 3CH3NO2) and [Pt4(CH3COO)4(dmap)8](ClO4)4 x 4 H2O (5a(ClO4)4-4H2O), have been structurally characterized. Both 3a and 5a have a square-planar cluster core comprised of four PtII ions, and all eight out-of-plane coordination sites are occupied by acetate ligands in a bridging mode. In 5a, all of the in-plane sites are occupied by dmap ligands. In 3a, four dmap ligands occupy the coordination sites at the two mutually opposite edges of the square planar cluster skeleton, giving a trans tetrasubstituted form of [Pt4(CH3COO)8-] (1). In octasubstituted 5a, adjacent dmap ligands are so closely arranged that the Pt-N distances (2.20(3), 2.30(3) A) are longer than those in tetrasubstituted 3a (2.13(1), 2.15(1) A) and related Pt4 clusters. Furthermore, rotation of the dmap ligand about the Pt-N bond in 5a was restricted, and the rate constant of the rotation was 4.5s(-1) at 20 degrees C from dynamic NMR study. Cluster [Pt4(CH3COO)5(dmap)6]3+ (4a) also exhibited similar hindered rotation with the rate constants of 2.0s(-1), 12s(-1) and approximately 10(4)s(-1) at 20 degrees C depending on the coordination sites of the dmap ligands in 4a.  相似文献   

9.
1,3-Dimethyluracil (1,3-DimeU) reacts with trans-[(CH(3)NH(2))(2)Pt(H(2)O)(2)](+) to give trans-[(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)(H(2)O)]X (X = NO(3)(-), 1a, ClO(4)(-), 1b) and subsequently with NaCl to give trans-(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)Cl (2) or with NH(3) to yield trans-[(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)(NH(3))]ClO(4) (3). In a similar way, (dien)Pt(II) forms [dienPt(1,3-DimeU-C5)](+) (4). Reactions leading to formation of 1 and 4 are slow, taking days. In contrast, Hg(CH(3)COO)(2) reacts fast with 1,3-DimeU to give (1,3-DimeU-C5)Hg(CH(3)COO) (5). Both 1-methyluracil (1-MeUH) and uridine (urdH) react with (dien)Pt(II) initially at N(3) and subsequently with either (dien)Pt(II) or Hg(CH(3)COO)(2) also at C(5) to give the diplatinated species 7 and 9 or the mixed PtHg complex 8. C(5) binding of either Pt(II) or Hg(II) is evident from coupling of uracil-H(6) with either (195)Pt or (199)Hg nuclei and (3)J values of 47-74 Hz (for Pt compounds) and 185-197 Hz (for Hg compounds). J values of Pt compounds are influenced both by the ligands trans to the uracil C(5) position and by the number of metal entities bound to a uracil ring. Both 2 and 5 were X-ray structurally characterized. 2: monoclinic system, space group P2(1)/c, a = 15.736(6) ?, b = 11.481(6) ?, c = 25.655 (10) ?, beta = 145.55(3) degrees, V = 2621.9(28) ?(3), Z = 4. 5: monoclinic system, space group P2(1)/c, a = 4.905(2) ?, b = 18.451(6) ?, c = 11.801(5) ?, beta = 94.47(3) degrees, V = 1064.77(72) ?(3), Z = 4.  相似文献   

10.
Cu(CH3COO)2 和4 氨基 3,5 二甲基 1,2,4 三氮唑反应制得标题化合物的单晶[Cu2(CH3COO)4(C4H8N4)2]·2CH3CN。晶体属三斜晶系 ,空间群 ,a=8.266(2),b=8.585(2),c=10.741(2) ,α=75.58(3),β=88.46(3),γ=86.35(3)°,V=736.7(3) 3 ,Z=1,Dc=1.509g·cm 3,F(000)=346,μ=1.502mm 1 。X 射线衍射结构分析表明 ,Cu2(CH3COO)4(C4H8N4)2 单元是中心对称的双核配合物 ,两个铜原子间距为2.698 。每个金属原子被围成四方锥的配位结构 ,四个乙酸根配体中最近的四个氧原子处在底面上[Cu O=1.965(3)~1.986(3) ] ,一个4 氨基 3,5 二甲基 1,2,4 三氮唑配体位于顶点位置Cu N=2.172 。  相似文献   

11.
The synthesis and characterization of a series of mixed-ligand oxorhenium(V) complexes containing the o-diphenylphosphinophenolato ligand (HL) and model peptide fragments acting as the tridentate coligand are reported. Thus, by reacting equimolar amounts of tiopronin, Gly-Gly, Gly-L-Phe, or glutathione (GSH) peptides on the [(n-C4H9)4N][ReOCl3(L)] precursor in refluxing MeCN/MeOH or aqueous MeCN/MeOH mixtures, the following complexes were obtained: ReO([SC(CH3)CONCH2COO][L])[(n-C4H9)4N], 1, ReO([H2NCH2CONCH2COO][L]), 2, ReO)[H2NCH2CONCH(CH2C6H5)COO][L]), 3, and ReO([SCH2CH(NHCOCH2CH2CHNH2COOH)CONCH2COO][L])Na, 4. The compounds are closed-shell 18-electron oxorhenium species adopting a distorted octahedral geometry, as demonstrated by classical spectroscopical methods including multinuclear NMR. X-ray diffraction analyses for 1 and 2 are also reported. By comparative stability studies of complexes 1-3 against excess GSH it was shown that complex 3 containing the bulky C6H5CH2 substituent adjacent to the coordinated carboxylate group of Phe is the most stable complex.  相似文献   

12.
Facile substitution reactions of the two water ligands in the hydrophilic tetradentate phosphine complex cis-[Fe{(HOCH2)P{CH2N(CH2P(CH2OH)2)CH2}2P(CH2OH)}(H2O)2](SO4) (abbreviated to [Fe(L1)(H2O)2](SO4), 1) take place upon addition of Cl-, NCS-, N3(-), CO3(2-) and CO to give [Fe(L1)X2] (2, X = Cl; 4, X = NCS; 5, X=N3), [Fe(L1)(kappa2-O(2)CO)], 6 and [Fe(L1)(CO)2](SO4), 7. The unsymmetrical mono-substituted intermediates [Fe(L1)(H2O)(CO)](SO(4)) and [Fe(L(1))(CO)(kappa(1)-OSO(3))] (8/9) have been identified spectroscopically en-route to 7. Treatment of 1 with acetic anhydride affords the acylated derivative [Fe{(AcOCH2)P{CH2N(CH2P(CH2OAc)2)CH2}2P(CH2OAc)}(kappa2-O(2)SO2)] (abbreviated to [Fe(L2)(kappa2-O(2)SO2)], 10), which has increased solubility over 1 in both organic solvents and water. Treatment of 1 with glycine does not lead to functionalisation of L1, but substitution of the aqua ligands occurs to form [Fe(L(1))(NH(2)CH(2)CO(2)-kappa(2)N,O)](HSO(4)), 11. Compound 10 reacts with chloride to form [Fe(L(2))Cl(2)] 12, and 12 reacts with CO in the presence of NaBPh4 to form [Fe(L2)Cl(CO)](BPh4) 13b. Both of the chlorides in 12 are substituted on reaction with NCS- and N3(-) to form [Fe(L2)(NCS)2] 14 and [Fe(L2)(N3)2] 15, respectively. Complexes 2.H2O, 4.2H2O, 5.0.812H2O, 6.1.7H2O, 7.H2O, 10.1.3CH3C(O)CH3, 12 and 15.0.5H2O have all been crystallographically characterised.  相似文献   

13.
The reactions of manganese(II) acetate or perchlorate, sodium azide or sodium cyanate, and the zwitterionic dicarboxylate ligand 1,4-bis(4-carboxylatopyridinium-1-methylene)benzene (L) under different conditions yielded three different Mn(II) coordination polymers with mixed carboxylate and azide (or cyanate) bridges: {[Mn (L(1))(0.5)(N(3))(OAc)]·3H(2)O}(n) (1), {[Mn(4)(L(1))(N(3))(8)(H(2)O)(4)(CH(3)OH)(2)]·[L(1)]}(n) (2), and {[Mn(3)(L(1))(NCO)(6)(H(2)O)(4)]·[L(1)]·[H(2)O](2)}(n) (3). The compounds exhibit diverse structures and magnetic properties. In 1, the 1D uniform anionic [Mn(N(3))(COO)(2)](n) chains with the (μ-EO-N(3))(μ-COO)(2) triple bridges (EO = end-on) are interlinked by the dipyridinium L ligands into highly undulated 2D layers. Magnetic studies on 1 reveal that the mixed triple bridges induce antiferromagnetic coupling between Mn(II) ions. Compounds 2 and 3 consist of 1D neutral polymeric chains and co-crystallized zwitterions, and the chains are formed by the L ligands interlinking linear polynuclear units. The polynuclear unit in 2 is tetranuclear with (μ-EO-N(3))(2) as central bridges and (μ-EO-N(3))(2)(μ-COO) as peripheral bridges, while that in 3 is trinuclear with (μ-NCO)(2)(μ-COO) bridges. Magnetic studies demonstrate that the magnetic coupling through the mixed azide/isocyanate and carboxylate bridges in 2 and 3 is antiferromagnetic. An expression of magnetic susceptibility based on a 2-J model for linear tetranuclear systems of classical spins has been deduced and applied to 2.  相似文献   

14.
A sterically hindered aryl phosphonic acid ArP(O)(OH)2 (2) (Ar = 2,4,6-isopropylphenyl) was synthesized and structurally characterized. ArP(O)(OH)2 forms an interesting hydrogen-bonded corrugated sheet-type supramolecular structure in the solid-state. A three-component reaction involving ArP(O)(OH)2, 3,5-dimethylpyrazole(DMPZH), and Cu(CH3COO)2.H2O produces the tetranuclear Cu(II) compound [Cu4(mu3-OH)2{ArPO2(OH)}2(CH3CO2)2(DMPZH)4][CH3COO]2.CH2Cl2 (3). A similar three-component reaction involving ArP(O)(OH)2, 3,5-dimethylpyrazole, and Zn(CH3COO)2.2H2O yields the tetranuclear Zn(II) compound [Zn4{ArPO3}2{ArPO2(OH)}2{DMPZH}4(DMPZ)2].5MeOH (4). While 3 has been found to have an asymmetric cage structure where two dinuclear copper cores are bridged by bidentate [ArPO2(OH)]- ligands, 4 possesses an open-book tricyclic structure composed of three fused metallophosphonate rings. Magnetic studies on 3 revealed antiferromagnetic behavior.  相似文献   

15.
New Cu(II) complexes of sulfamethazine (4-amino-N-[4,6-dimethyl-2-pyrimidinyl]benzenesulfonamide, HL) [Cu(2)(CH(3)COO)(2)(L)(2)].2dmf (1) and ([Cu(L)(2)].2H(2)O)(infinity) (2) were prepared and structurally characterized. Compound 1 crystallizes in the monoclinic system, space group P2(1)/n, with a = 8.9486(9) A, b = 15.0956(12) A, c = 16.542(3) A, beta = 105.584(15) degrees, and Z = 2. Compound 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 13.8097(8) A, b = 14.5765(4) A, c = 13.7853(15) A, beta = 96.033(9) degrees, and Z = 1. In compound 1 two copper ions are linked by two syn-syn acetates and two nonlinear NCN bridging groups pertaining to the deprotonated sulfamethazine ligands. Each copper center presents a nearly square planar geometry. Magnetic susceptibility data for 1 show a strong antiferromagnetic coupling with 2J = -216.7 cm(-)(1). The EPR spectra at the X- and Q-band frequencies present the signals corresponding to the dinuclear entity, being the zero-field splitting parameter, D = 0.265 cm(-)(1). The antiferromagnetic exchange coupling is discussed using DFT calculations on some model compounds with NCN bridging ligands and also on model structures with mixed mu-acetato and NCN bridges. The copper in the polymeric compound 2 is five coordinate. The CuN(5) chromophore has a highly distorted square pyramidal geometry with small axial N-Cu-N angles of 65.53(14) and 59.90(13) degrees. In the structure a sulfamethazinate anion binds to one copper through the sulfonamido and pyrimidine N atoms and to an adjacent copper via the amino N atom.  相似文献   

16.
The mononuclear compound (1) [Fe(II)(L)(2)](BF(4))(2) (L = 4-ethynyl-2,6-bis(pyrazol-1-yl)pyridine) was prepared and structurally as well as magnetically characterised. The crystallisation revealed the formation of two polymorphs--the orthorhombic 1A and the tetragonal form 1B. A third, intermediate phase 1C was found exhibiting a different orthorhombic space group. Reversibility of the phase transition between 1A and 1C was studied by variable-temperature single-crystal and powder X-ray diffraction studies, while an irreversible phase transition was observed for the transition of 1B→1C. The magnetic studies show that the 1A?1C transition is accompanied by a very abrupt spin transition (ST) with 8 K hysteresis width (T(1/2)(↓) = 337 K, T(1/2)(↑) = 345 K). The ST was confirmed by M?ssbauer spectroscopy as well as by DSC studies. In contrast, the 1B polymorph remained low-spin up to 420 K. In conclusion, a full cycle of intertwined phase- and spin-conversions of three polymorphs could be proven following the general scheme 1B→1C?1A.  相似文献   

17.
Complexes [Zn[Se(2)P(OEt)(2)](2)]( infinity ) (1) and [Zn(2)[Se(2)P(O(i)Pr)(2)](4)] (2) are prepared from the reaction of Zn(ClO(4))(2).6H(2)O and (NH(4))[Se(2)P(OR)(2)] (R = Et and (i)Pr) in a molar ratio of 1:2 in deoxygenated water at room temperature. Positive FAB mass spectra show m/z peaks at 968.8 (Zn(2)L(3)(+)) and 344.8 (ZnL(+)) for 1 and m/z at 1052.8 (Zn(2)L(3)(+)) for 2. (1)H NMR spectra exhibit chemical shifts at delta 1.43 and 4.23 ppm for 1 and 1.41 and 4.87 ppm for 2 due to Et and (i)Pr group of dsep ligands. While the solid-state structure of compound 1 is a one-dimensional polymer via symmetrically bridging dsep ligands, complex 2 in the crystalline state exists as a dimer. In both 1 and 2, zinc atoms are connected by two bridging dsep ligands with an additional chelating ligand at each zinc atom. The dsep ligands exhibit bimetallic biconnective (micro(2), eta(2)) and monometallic biconnective (eta(2)) coordination patterns. Thus, each zinc atom is coordinated by four selenium atoms from two bridging and one chelating dsep ligands and the geometry around zinc is distorted tetrahedral. The Zn-Se distances range between 2.422 and 2.524 A. From variable-temperature (31)P NMR studies it has been found that monomer and dimer of the complex are in equilibrium in solution via exchange of bridging and chelating ligands. However, at temperature above 40 degrees C the complex exists as a monomer and shows a very sharp peak while with lowering of the temperature the percentage of dimer increases gradually at the expense of monomer. Below -90 degrees C the complex exists as a dimer and two peaks are observed with equal intensities which are due to bridging and chelating ligands. (77)Se NMR spectra of both complexes at -30 degrees C exhibit three doublets due to the presence of monomer and dimer in solution.  相似文献   

18.
The complex mer-[Co(III)(L(1)Npy)(2)](+) (1') where the L(1)Npy(-) is the tridentate 3-[(2-pyridyl)methylimino]butan-2-one oximate ligand, gives alkyl-cobalt derivatives after reduction with NaBH(4)/Pd(2+) to the Co(I) and alkylation. The formation of the cobalt-carbon bond is accompanied by the reduction to the amino form of one or both imino ligands (depending on the experimental conditions) initially present in 1'. In one series of experiments, complexes of the type fac-[RCo(III)(L(1)Npy)(H-L(1)NHpy)](+) (R = Me, i-Pr, CH(2)Cl, CH(2)Br, CH(2)CF(3), and Bz) were obtained, in which only one of the two ligands was reduced to the amino form (H-L(1)NHpy). The saturation of one azomethine group causes the products to assume a fac configuration and induces the formation of one asymmetric carbon and one asymmetric nitrogen center in the chelating system. When an excess of reducing agent is used, both azomethine groups may be saturated, causing the introduction of one pair of chiral carbons and one pair of chiral nitrogens. Two isomers of the methyl derivative [MeCo(III)(L(1)NHpy)(H-L(1)NHpy)](+) were isolated. The X-ray analysis reveals that these isomers differ from one another in configuration of the C and N chiral centers. Possible reaction mechanisms leading to these different types of complexes are proposed.  相似文献   

19.
Complex formation between FeX(2)6 H(2)O (X=BF(4) or ClO(4)) and the pyridine-derived tetrapodal tetraphosphane C(5)H(3)N[CMe(CH(2)PMe(2))(2)](2) (1) in methanol proceeds with solvent-induced cleavage of one PMe(2) group. Depending on the reaction temperature and the nature of the counterion, iron(II) is coordinated, in distorted square-pyramidal fashion, by the anionic remainder of the chelating ligand, C(5)H(3)N[CMe(CH(2)PMe(2))(2)][CMe(CH(2)PMe(2))(CH(2) (-))] (NP(3)C(-) donor set: X=BF(4), -50 degrees C: 2; X=ClO(4), RT: 4) or its protonated form C(5)H(3)N[CMe(CH(2)PMe(2))(2)][CMe(CH(2)PMe(2))(CH(3))], in which the methyl group is in agostic interaction with the metal centre (X=BF(4), RT: 3; X=ClO(4), +50 degrees C: 5). A monodentate phosphinite ligand Me(2)POMe, formed from the cleaved PMe(2) group and methanol, completes the coordination octahedron in both cases. Working in CD(3)OD (X=BF(4), RT) gives the deuterium-substituted analogue of 3, with ligands L(CH(2)D) (L=residual chelating ligand) and Me(2)POCD(3). A mechanism for the observed phosphorus-carbon bond cleavage is suggested. Complex 2, when isolated at -50 degrees C, is stable in the solid state even at room temperature. The reaction of 2 in methanol with carbon monoxide (10.5 bar) at elevated temperature forms, in addition to as yet unidentified side products, the carbonyl complex [(1)Fe(CO)](BF(4))(2) (7), in which the previous P--C bond cleavage has been reversed, reforming the original tetrapodal pentadentate NP(4) ligand 1. All compounds have been fully characterised, including X-ray structure analyses in most cases.  相似文献   

20.
Four new dipyridylamino-substituted s-triazine ligands DBB (N(2),N(2),N(4),N(4)-tetrabenzyl-N(6),N(6)-di(pyridin-2-yl)-1,3,5-triazine-2,4,6-triamine), DDB (N(2),N(2),N(4),N(4)-tetrabutyl-N(6),N(6)-di(pyridin-2-yl)-1,3,5-triazine-2,4,6-triamine), DCCl (6-chloro-N(2),N(2)-dicyclohexyl-N(4),N(4)-di(pyridin-2-yl)-1,3,5-triazine-2,4-diamine) and DDT (N(2),N(2),N(4),N(4)-tetraphenyl-N(6),N(6)-di(pyridin-2-yl)-1,3,5-triazine-2,4,6-triamine), have been incorporated into eight new, 0D Fe(II) compounds of type [Fe(II)(NCX)(2)(L)(2)]·Solvent (where NCX = NCS(-), NCSe(-) or N(CN)(2)(-)). The polymorphic compounds α-trans-[Fe(II)(NCS)(2)(DBB)(2)] (1) and β-trans-[Fe(II)(NCS)(2)(DBB)(2)] (2) display, respectively, a relatively abrupt, complete, one-step spin transition with T(?) ~ 170 K, and a more gradual, complete, one-step spin transition with T(?) ~ 300 K. Gradual, one-step spin transitions are observed for trans-[Fe(II)(N(CN)(2))(2)(DBB)(2)]·2CH(3)CH(2)OH (3) and trans-[Fe(II)(NCSe)(2)(DCCl)(2)]·2CH(3)OH (6) with T(?) ~ 280 K for both, while the one-step spin transition observed for a desolvated sample of trans-[Fe(II)(NCSe)(2)(DDB)(2)]·2CH(3)OH (4) is relatively abrupt, showing hysteresis with T(?↑) = 285 K and T(?↓) = 275 K. The compounds cis-[Fe(II)(NCS)(2)(DDB)(2)] (5) and trans-[Fe(II)(NCS)(2)(DDT)(2)]·4CH(2)Cl(2) (7) remain high spin, while structural data on trans-[Fe(II)(NCSe)(2)(DDT)(2)]·4CH(2)Cl(2) (8) suggests a spin transition at low temperatures. It is likely that distortion of the Fe(II)N(6) octahedron, intermolecular interactions and molecular conformation are crucial in deciding both the T(?) and abruptness of the spin transition for these species, although the nature of their influence varies. Variable temperature powder X-ray diffraction measurements on the polymorphs 1 and 2 reveal anisotropy in the unit cell parameters as the spin transition occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号