首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li3V2(PO4)3/C samples were synthesized by two different synthesis methods. Their influence on electrochemical performances of Li3V2(PO4)3/C as cathode materials for lithium-ion batteries was investigated. The structure and morphology of Li3V2(PO4)3/C samples were characterized by X-ray diffraction and scanning electron microscopy. Electrochemical performance was characterized by charge/discharge, cyclic voltammetry, and alternating current (AC) impedance measurements. Li3V2(PO4)3/C with smaller grain size showed better performances in terms of the discharge capacity and cycle stability. The improved electrochemical properties of the Li3V2(PO4)3/C were attributed to the decreasing grain size and enhanced electrical conductivity produced via low temperature route. AC impedance measurements also showed that the Li3V2(PO4)3/C synthesized by low temperature route significantly decreased the charge-transfer resistance and shortened the migration distance of lithium ion.  相似文献   

2.
The characteristics of Li+-ion conductivity σdc of structural γ modifications of Li3R2(PO4)3 compounds (R = Fe, Sc) existing in the superionic state have been investigated by impedance spectroscopy. The type of structural framework [R2P3O12]3- affects the σdc value and the σdc activation enthalpy in these compounds. The ion transport activation enthalpy in γ-Li3R2(PO4)3Hσ = 0.31 ± 0.03 eV) is lower than in γ-Li3Fe2(PO4)3Hσ = 0.36 ± 0.03 eV). The conductivity of γ-Li3Fe2(PO4)3dc = 0.02 S/cm at 573 K) is twice as high as that of γ-Li3R2(PO4)3. A decrease in temperature causes a structural transformation of Li3R2(PO4)3 from the superionic γ modification (space group Pcan) through the intermediate metastable β modification (space group P21/n) into the “dielectric” α modification (space group P21/n). Upon cooling, σdc for both phosphates decreases by a factor of about 100 at the superionic TSIC transition. In Li3Fe2(PO4)3 σdc gradually decreases in the temperature range TSIC = 430–540 K, whereas in Li3R2(PO4)3 σdc undergoes a jump at TSIC = 540 ± 25 K. Possible crystallochemical factors responsible for the difference in the σdc and ΔHσ values and the thermodynamics and kinetics of the superionic transition for Li3R2(PO4)3 are discussed.  相似文献   

3.
Li3V2(PO4)3 glass-ceramic nanocomposites, based on 37.5Li2O-25V2O5-37.5P2O5 mol% glass, were successfully prepared via heat treatment (HT) process. The structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD patterns exhibit the formation of Li3V2(PO4)3 NASICON type with monoclinic structure. The grain sizes were found to be in the range 32–56 nm. The effect of grain size on the dynamics of Li+ ions in these glass-ceramic nanocomposites has been studied in the frequency range of 20 Hz–1 MHz and in the temperature range of 333–373 K and analyzed by using both the conductivity and modulus formalisms. The frequency exponent obtained from the power law decreases with the increase of temperature, suggesting a weaker correlation among the Li+ ions. Scaling of the conductivity spectra has also been performed in order to obtain insight into the relaxation mechanisms. The imaginary modulus spectra are broader than the Debye peak-width, but are asymmetric and distorted toward the high frequency region of the maxima. The electric modulus data have been fitted to the non-exponential Kohlrausch–Williams–Watts (KWW) function and the value of the stretched exponent β is fairly low, suggesting a higher ionic conductivity in the glass and its glass-ceramic nanocomposites. The advantages of these glass-ceramic nanocomposites as cathode materials in Li-ion batteries are shortened diffusion paths for Li+ ions/electrons and higher surface area of contact between cathode and electrolyte.  相似文献   

4.
Li-ion battery cathode material lithium-vanadium-phosphate Li3V2(PO4)3 was synthesized by a carbon-thermal reduction method, using stearic acid, LiH2PO4, and V2O5 as raw materials. And stearic acid acted as reductant, carbon source, and surface active agent. The effect of its content on the crystal structure and electrochemical performance of Li3V2(PO4)3/C were characterized by XRD and electrochemical performance testing, respectively. The results showed that the content of carbon source has no significant effect on the crystal structure of lithium vanadium phosphate. Lihtium vanadium phosphate obtained with 12.3% stearic acid demonstrated the best electrochemical properties with a typical discharge capacity of 119.4 mAh/g at 0.1 C and capacity retention behavior of 98.5% after 50 cycles. And it has high reversible discharge capacity of 83 mAh/g at 5 C with the voltage window of 3 to 4.3 V.  相似文献   

5.
A new polyanionic cathode material, Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C for lithium-ion batteries, was synthesized using a sol-gel method and with N,N-dimethyl formamide as a dispersion agent. The analysis of electron transmission spectroscopy and X-ray diffraction revealed that the composite contained two phases. The material has high crystallinity with a grain size of 20–50 nm. The valence states of Mn, V, and Fe in the composite were analyzed by X-ray photoelectron spectroscopy. The electrochemical kinetics in Li3V2(PO4)3 is effectively enhanced by the incorporation of LiMnPO4 and LiFePO4, via structure modification and reduced Li diffusion length. The Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C materials displayed high rate capacity and steady cycle performance with discharge capacity remained 148 mAh g?1 after 50 cycles at the rate of 0.2C. In particular, the composite exhibited excellent reversible capacities, with the values of 157, 134, 120, 102, and 94 mAh g?1 at charge/discharge 0.2, 0.5, 1, 2, and 5C rates, respectively.  相似文献   

6.
Composite cathode material LiFePO4–Li3V2(PO4)3 is synthesized through a chemical reduction and lithiation using FeVO4·xH2O as both iron and vanadium sources. The structural properties of LiFePO4–Li3V2(PO4)3 are investigated. X-ray diffraction results show the composite material containing olivine type LiFePO4 and monoclinic Li3V2(PO4)3 phases. High-resolution transmission electron microscopy and energy-dispersive X-ray spectrometry results indicate that mutual doping effects take place between the LiFePO4 and Li3V2(PO4)3 particles with V3+ doping the LiFePO4 while Fe2+ dopes the Li3V2(PO4)3. LiFePO4–Li3V2(PO4)3 nanocomposites are formed in the carbon webs. There is no structural compatibility between monoclinic (Li3V2(PO4)3) and olivine (LiFePO4) domains in composite material LiFePO4–Li3V2(PO4)3.  相似文献   

7.
The spinel structure of lithium titanate Li4Ti5O12 is refined by the Rietveld full-profile analysis with the use of x-ray and neutron powder diffraction data. The distribution and coordinates of atoms are determined. The Li4Ti5O12 compound is studied at high temperatures by differential scanning calorimetry and Raman spectroscopy. The electrical conductivity is measured in the high-temperature range. It is shown that the Li4Ti5O12 compound with a spinel structure undergoes two successive order-disorder phase transitions due to different distributions of lithium atoms and cation vacancies (□, V) in a defect structure of the NaCl type: (Li)8a[Li0.33Ti1.67]16dO4 → [Li□]16c[Li1.33Ti1.67]16dO4 → [Li1.330.67]16c[Ti1.670.33]16dO4. The low-temperature diffusion of lithium predominantly occurs either through the mechanism ... → Li(8a) → V(16c) → V(8a) → ... in the spinel phase or through the mechanism ... → Li(16c) → V(8a) → V(16c) → ... in an intermediate phase. In the high-temperature phase, the lithium cations also migrate over 48f vacancies: ... Li(16c) → V(8a, 48f) → V(16c) → ....  相似文献   

8.
The layered LiNi0.5Mn0.47Al0.03O2 was synthesized by wet chemical method and characterized by X-ray diffraction and analysis of magnetic measurements. The powders adopted the α-NaFeO2 structure. This substitution of Al for Mn promotes the formation of Li(Ni0.472+Ni0.033+Mn0.474+Al0.033+)O2 structures and induces an increase in the average oxidation state of Ni, thereby leading to the shrinkage of the lattice unit cell. The concentration of antisite defects in which Ni2+ occupies the (3a) Li lattice sites in the Wyckoff notation has been estimated from the ferromagnetic Ni2+(3a)–Mn4+(3b) pairing observed below 140 K. The substitution of 3% Al for Mn reduces the amount of antisite defects from 7% to 6.4–6.5%. The analysis of the magnetic properties in the paramagnetic phase in the framework of the Curie–Weiss law agrees well with the combination of Ni2+ (S = 1), Ni3+ (S = 1/2) and Mn4+ (S = 3/2) spin-only values. Delithiation has been made by the use of K2S2O8. According to this process, known to be softer than the electrochemical one, the nickel ions in the (3b) sites are converted into Ni4+ in the high spin configuration, while Ni2+(3a)–Mn4+(3b) ferromagnetic pairs remain, as the Li+(3b) ions linked to the Ni2+(3a) ions in the antisite defects are not removed. The results show that the antisite defect is surrounded by Mn4+ ions, implying the nonuniform distribution of the cations in agreement with previous NMR and neutron experiments.  相似文献   

9.
The effect of fluorine substitution on the electrochemical properties of Li3V 2(PO4)3 cathode materials was studied. Samples with stoichiometric proportions of Li3V 2(PO4)3−xFx (x=0,0.05,0.10,0.15) were prepared by adding LiF in the starting materials of Li3V 2(PO4)3. XRD studies showed that the F-substituted Li3V 2(PO4)3 had the same monoclinic structure as the un-substituted Li3V 2(PO4)3. SEM images showed that F-substitution Li3V 2(PO4)3 had a regular and uniform particles. The results of electrochemical measurement showed that F-substitution can improve the rate capability of these cathode materials. The Li3V 2(PO4)2.90F0.10 sample showed the best high rate performance. Its discharge capacity at 10 C rate was 117 mA h g−1 with 30th capacity retention of about 90.60%. The electrode reaction reversibility and electronic conductivity was enhanced, and the charge transfer resistance was decreased through F-substitution. The improved electrochemical performance of F-substitution Li3V 2(PO4)3 cathode materials were attributed to the above factors.  相似文献   

10.
Wei Yuan  Ji Yan  Zhiyuan Tang  Li Ma 《Ionics》2012,18(3):329-335
A novel ultrasonic-assisted sol–gel method is proposed to prepare Li3V2(PO4)3/C cathode material. X-ray diffraction analyses show that both Li3V2(PO4)3/C(A) synthesized by the ultrasonic-assisted sol–gel method and Li3V2(PO4)3/C(B) synthesized by a traditional sol–gel method have monoclinic structure. Scanning electron microscopy images indicate that the Li3V2(PO4)3/C(A) composite has a more uniform morphology than that of the Li3V2(PO4)3/C(B) composite. In the voltage range of 3.0–4.3 V (vs. Li/Li+), the initial specific discharge capacities of the Li3V2(PO4)3/C(A) and Li3V2(PO4)3/C(B) samples are 129.8 and 125.9 mAh g−1 at 1C rate (1C = 133 mA g−1), respectively. Furthermore, at 2-C charge/10-C discharge rate, the specific discharge capacity of the Li3V2(PO4)3/C(A) composite retains 113.2 mAh g−1 after 50 cycles, but the Li3V2(PO4)3/C(B) composite only presents a capacity of 94.8 mAh g−1.  相似文献   

11.
Lithium phosphate (Li3PO4) is one of the promising solid electrolyte materials for lithium-ion battery because of its high ionic conductivity. A crystalline form of Li3PO4 had been prepared by two different methods. The first method was wet chemical reaction between LiOH and H3PO4, and the second method was solid-state reaction between Li2O and P2O5. Crystal structure of Li3PO4 white powder had been investigated by using an X-ray diffraction (XRD) analysis. The results show that Li3PO4 prepared by wet chemical reaction belongs to orthorhombic unit cell of β-Li3PO4 with space group Pmn21. Meanwhile, Li3PO4 powder prepared by solid-state reaction belongs to orthorhombic unit cell of γ-Li3PO4 with space group Pmnb and another unknown phase of Li4P2O7. The impurity of Li4P2O7 was due to phase transformation in solid state reaction during quenching of molten mixture from high temperature. Ionic conductivity of Li3PO4 prepared by solid-state reaction was ~3.10?7 S/cm, which was higher than Li3PO4 prepared by wet chemical reaction ~4.10?8 S/cm. This increasing ionic conductivity may due to mixed crystal structures that increased Li-ion mobility in Li3PO4.  相似文献   

12.
Single crystals of yttrium aluminum borate YAl3(BO3)4 doped with manganese ions are studied using electron paramagnetic resonance spectroscopy. It is shown that manganese ions introduced at low concentrations into the sample predominantly occupy yttrium ion sites in the crystal structure. The shape of the electron paramagnetic resonance spectrum unambiguously indicates that the valence of manganese ions in this case is equal to 2+. The parameters of the spin Hamiltonian of Mn2+ ions in the YAl3(BO3)4 matrix are determined at room temperature. The magnitude and sign of the fine structure parameter D allow the conclusion that the YAl3(BO3)4 single crystals doped with manganese ions have a strong crystal field at the yttrium ion sites and easy-axis anisotropy.  相似文献   

13.
Comprehensive NMR investigation of low-frequency spin dynamics of LiCu2O2 (LCO) and NaCu2O2 (NCO) low-dimensional helical magnets in the paramagnetic state has been carried out for the first time. Temperature dependences of the spin–lattice relaxation rate and anisotropy on various LCO/NCO nuclei have been determined at various orientations of single crystals in an external magnetic field. The spatial asymmetry of spin fluctuations in LCO multiferroic has been discovered. The quantitative analysis of the anisotropy of spin–lattice relaxation in LCO/NCO has allowed estimating the contributions of individual neighboring Cu2+ ions to the transferred hyperfine field on Li+(Na+) ions.  相似文献   

14.
Li[Co0.1Ni0.15Li0.2Mn0.55]O2 was synthesized, as a cathode material with high capacity, by a simple combustion method followed by annealing at 800?°C. Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode materials were coated with lithium-active Co3(PO4)2 to improve the electrochemical performance of rechargeable lithium batteries. Morphologies and physical properties of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 before and after the Co3(PO4)2 coating were analyzed with a scanning electron microscope equipped with an energy dispersive X-ray spectroscope. Transmission electron microscopy, powder X-ray diffraction, and Brunauer?CEmmett?CTeller surface area analyses were also carried out. The electrochemical performances of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material before and after Co3(PO4)2 coating were evaluated by galvanostatic charge?Cdischarge testing at different charge and discharge densities. The temperature dependence of the cathode material before and after Co3(PO4)2 coating was investigated at 0, 10, 20, 30, 40, and 50?°C at a rate of 0.1?C. Co3(PO4)2-Li[Co0.1Ni0.15Li0.2Mn0.55]O2 exhibited good electrochemical performance under high C-rate and experimental temperature conditions. The enhanced electrochemical performances were attributed to the formation of a lithium-active Co3(PO4)2-coating layer on Li[Co0.1Ni0.15Li0.2Mn0.55]O2.  相似文献   

15.
Solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 was prepared by sol-gel method under different sintering conditions. The structural identification, surface morphology, electrochemical window, ionic conductivity, and activation energy of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets were investigated by X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. It is found that the sintering temperature and time have considerable effect on the properties of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets. The Li1.3Al0.3Ti1.7(PO4)3 pellet sintered at 900 °C for 2 h is denser than the pellets sintered at other conditions. Different sintering conditions result in the sintered pellet with different porosity. However, the sintering conditions have little effect on the electrochemical window of Li1.3Al0.3Ti1.7(PO4)3. Among the Li1.3Al0.3Ti1.7(PO4)3 pellets sintered at various conditions, the pellet sintered at 900 °C for 2 h shows the highest ionic conductivity of 3.46 × 10−4 S cm−1 and the lowest activation energy of 0.2821 eV.  相似文献   

16.
Physical and spectral studies on 20ZnO + xLi2O + (30-x)Na2O + 50B2O3 (5 ≤ x ≥ 25) doped with 0.1 mol% of paramagnetic CuO impurity are carried out. Powder X-ray diffraction patterns of the glass samples confirm the amorphous nature. The physical parameters of all the glasses were also evaluated with respect to the composition. The electron paramagnetic resonance spectra of all these glasses exhibit resonance signals that are characteristic of Cu2+ ions. The optical absorption spectra also confirm the Cu2+ ion in tetragonally elongated octahedral site. Various crystal field, spin-Hamiltonian and bonding parameters are evaluated. It is observed that the mixed alkali effect is significant.  相似文献   

17.
The compatibility of the solid electrolyte Li1.5Al0.5Ti1.5(PO4)3 (LATP) with the cathode materials LiCoO2, LiMn2O4, LiCoPO4, LiFePO4, and LiMn0.5Fe0.5PO4 was investigated in a co-sintering study. Mixtures of LATP and the different cathode materials were sintered at various temperatures and subsequently analyzed by thermal analysis, X-ray diffraction, and electron microscopy. Oxide cathode materials display a rapid decomposition reaction with the electrolyte material even at temperatures as low as 500 °C, while olivine cathode materials are much more stable. The oxide cathode materials tend to decompose to lithium-free compounds, leaving lithium to form Li3PO4 and other metal phosphates. In contrast, the olivine cathode materials decompose to mixed phosphates, which can, in part, still be electrochemically active. Among the olivine cathode materials, LiFePO4 demonstrated the most promising results. No secondary phases were detected by X-ray diffraction after sintering a LATP/LiFePO4 mixture at temperatures as high as 700 °C. Electron microscopy revealed a small secondary phase probably consisting of Li2FeTi(PO4)3, which is ionically conductive and should be electrochemically active as well.  相似文献   

18.
The Sc2SiO5 single crystals doped with 0.001 at.% of the 143Nd3+ ion were studied by continuous-wave and pulse electron paramagnetic resonance methods. The g-tensors and hyperfine structure tensors for two magnetically non-equivalent Nd ions were obtained. The spin–spin and spin–lattice relaxation times were measured at 9.82 GHz in the temperature range from 4 to 10 K. It was established that three relaxation processes contribute to the spin–lattice relaxation processes. There are one-phonon spin–phonon interaction, two-phonon Raman interaction and two-phonon Orbach–Aminov relaxation processes. It was established that spin–spin relaxation time is of the same magnitude for neodymium ion doped in Sc2SiO5 and in Y2SiO5.  相似文献   

19.
Mg-doping effects on the electrochemical property of LiFePO4–Li3V2(PO4)3 composite materials, a mutual-doping system, are investigated. X-ray diffraction study indicates that Mg doping decreases the cell volume of LiFePO4 in the composite. The cyclic voltammograms reveal that the reversibility of the electrode reaction and the diffusion of lithium ion is enhanced by Mg doping. Mg doping also improves the conductivity and rate capacity of 7LiFePO4–Li3V2(PO4)3 composite material and decreases the polarization of the electrode reaction. The discharge capacity of the Mg-doped composite was 93 mAh?g?1 at the current density of 1,500 mA?g?1, and Mg-doped composite has better discharge performance than the original 7LiFePO4–Li3V2(PO4)3 composite at low temperature, too. At ?30 °C, the discharge capacity of Mg-doped LFVP is 89 mAh?g?1, higher than that of the original composite. Electrochemical impedance spectroscopy study shows that Mg2+ doping could enhance the electrochemical activity of 7LiFePO4–Li3V2(PO4)3 composite. Mg doping has a positive influence on the electrochemical performance of the LiFePO4–Li3V2(PO4)3 composite material.  相似文献   

20.
A Cu2+-doped single crystal of catena-trans-bis(N-(2-hydroxyethyl)-ethylenediamine) zinc(II)-tetra-m-cyanopaladate(II) [ZnPd(CN)4(C4H12N2O2)] complex has been investigated by electron paramagnetic resonance (EPR) technique at room temperature. EPR spectra indicate that Cu2+ ions substitute for magnetically equivalent Zn2+ ions and form octahedral complexes in [ZnPd(CN)4(C4H12N2O2)] hosts. The crystal field affecting the Cu2+ ion is nearly axial. The optical absorption studies show two bands at 322 nm (30864 cm−1) and 634 nm (15337 cm−1) which confirm the axial symmetry. The spin Hamiltonian parameters and the relevant wave function are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号