首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new compound UPd2Sb was prepared and studied by means of X-ray diffraction, magnetization, electrical resistivity, magnetoresistivity, thermoelectric power and specific heat measurements. The phase crystallizes with a cubic structure of the MnCu2Al-type (s.g. ). It orders antiferromagnetically at TN=55 K and exhibits a modified Curie-Weiss behaviour with reduced effective magnetic moment at higher temperatures. The electrical resistivity behaves in a manner characteristic of systems with strong electronic correlations, showing Kondo effect in the paramagnetic region and Kondo-like response to the applied magnetic field. The Seebeck coefficient exhibits a behaviour expected for scattering of conduction electrons on a narrow quasiparticle band near the Fermi energy. The low-temperature electronic specific heat in UPd2Sb is moderately enhanced being about 81 mJ/mol K2.  相似文献   

2.
The title compound absorbs slowly hydrogen at 523 K under a pressure of P(H2)=1 MPa, giving the new hydride Ce(Ni0.82Cu0.18)SnH1.7(1). The hydrogenation induces both: (i) a structural transition from orthorhombic TiNiSi-type to hexagonal ZrBeSi-type and (ii) a magnetic transition from antiferromagnetic to ferromagnetic ordering This behaviour is compared to that observed recently during the hydrogen insertion into the Kondo semi-metal stannide CeNiSn.  相似文献   

3.
The effect of Pr-doping on structural, electronic transport, magnetic properties in perovskite molybdates Sr1−xPrxMoO3 (0≤x≤0.15) has been investigated. The Pr-doping at Sr-site does not change the space group of the samples, but decreases the lattice parameter a. The magnitude of resistivity ρ increases initially (x≤0.08) and then decreases with further increasing Pr-doping level x and ρ(T) behaves as T2 and T dependence in the low-temperature range blow T* and high-temperature range of 150 K<T<350 K, related to the electron-electron (e-e) and electron-phonon (e-ph) scattering, respectively. The magnetic susceptibility χ value of the sample increases with increasing x and the χ(T) curve for all samples can be well described by the model of exchange-enhanced paramagnetism. The specific heat magnitude in the low-temperature region increases with increasing Pr-doping level. The specific heat value agrees with the classical Dulong-Petit phonon specific heat, Ccl=3kBrNA=124.7 J/mol K in the high-temperature region and the temperature dependence of the specific heat can be well described by the formula Cp(T)/T=γe+βpT2 in the low-temperature range. These behaviors can be explained by the competition between the increase in the density of state (DOS) at Fermi energy level and the disorder effect due to Pr-doping.  相似文献   

4.
Systematic studies of the structural, transport, magnetic and specific heat behavior have been performed on the perovskite molybdates SrMo1−xNixO3 (0.02≤x≤0.08). Ni doping at the Mo site does not change the structure of all samples, but increases the lattice parameter a monotonically. All of the doped samples keep their metallic behavior. The magnetic properties keep a Pauli paramagnetism in the high-temperature region, but have a ferromagnetic (FM) transition at about 50 K. The resistivity, ρ, and magnetic susceptibility, χ, increase, while the electronic specific heat coefficient, γe, decreases monotonically with the increase of Ni doping content, x. The electronic transport of all samples shows a T2 dependence in the low-temperature region and a T dependence in the high-temperature region, respectively. The temperature dependence of the specific heat can be well described by the formula Cp(T)/T=γe+βpT2 in the low-temperature range. These behaviors can be explained by the competition between the decrease in the density of states (DOS) at the Fermi level and the electron localization due to the disorder effect induced by the random distribution of Ni at the Mo site in the samples.  相似文献   

5.
The zero-field heat capacity shows an antiferromagnetic ordering of Gd3+ in gadolinium orthophosphate at 0.8 K. The application of the external magnetic field leads to the splitting of the Gd3+ ground-state multiplet. The antiferromagnetic ordering becomes gradually suppressed with increasing field, and the loss of the long-range magnetic ordering with a threshold field between 0.2 and 0.5 T is indicated by heat-capacity data. Estimated entropy of the anomaly due to magnetic ordering or the Schottky-type anomaly (above 0.5 T) is close to Rln8 as expected for Gd3+ ground-state multiplet. Magnetization measurements above 2 K corroborate this magnetic behaviour.  相似文献   

6.
Single crystals of YbRhIn5 and YbIrIn5 have been grown by flux method. The crystals were characterized by means of X-ray diffraction, magnetic and electrical transport measurements. Both compounds were found to be weak diamagnets with metallic character of the electrical conductivity and the Seebeck coefficient.  相似文献   

7.
We report measurements of the specific heatC p(T), electrical resistivity ϱ(T) and magnetic susceptibility ξ(T) of hexagonal CePd2In, at low temperatures. Anomalies inC p(T), χ(T) and ϱ(T) atT=1.23 K, indicate a phase transition, most likely to an antiferromagnetically-ordered phase. The electronic entropy reachesR ln2 per mole Ce at 9.2K, suggesting that the phase transition involves a doublet state. The ordered phase coexists with moderately correlated itinerant electrons.  相似文献   

8.
The low-temperature magnetic ordering of the dimorphic DySi compound has been studied at 1.5 K by neutron diffraction on two polycrystalline samples. The samples comprise various amounts of the two orthorhombic modifications: CrB-type (Cmcm Nr. 63, all atoms at 4c site: (0, y, )) and FeB-type (Pnma Nr. 62, all atoms at 4c site: (x, , z)), both order antiferromagnetically (TN≈38 K). The CrB-type phase orders with a uniaxial structure with the wave vector q1=(0, 0, ) requiring a doubling of the c-axis. The Dy moments point along the linear chain with the shortest distance c. At 1.5 K, the ordered moment value is 8.57(1) μB/Dy atom.Two symmetry independent wave vectors describe the 1.5 K magnetic ordering of the FeB-type phase: q2=(0, , ) and q3=(0, 0.484(1), 0.0892(1)), coexisting in form of domains. In both structures the magnetic moments are confined to the (0 0 1) plane at an angle of 2(2)° and 22(3)° from the shortest axis b, respectively. Both structures correspond to sine wave modulations. The amplitude of the q2 wave is mo=7.5(1) μB/Dy atom and that of q3 8.2(1) μB/Dy atom. The wave vector q2 when referring to the (a, 2b, c) cell and the wave vector q=(0, 0, ) corresponds to a transversal modulation, which by a proper origin choice can be also described as an antiphase domain structure with two amplitudes. The moments point to the b-axis and are stacked in the sequence (+mo/2, −mo/2, −mo, −mo/2, +mo/2, +mo, …) along the c-direction, while tb acts as an antitranslation. For the q3 phase, the local moment value depends on the atom position in the wave. We also discuss the case where q3 and q2 act simultaneously in physical space.  相似文献   

9.
The magnetic properties of polycrystalline PrRh2Si2 sample have been investigated by neutron diffraction measurements. Antiferromagnetic transition with an anomalously high ordering temperature (TN∼68 K) is clearly observed in magnetic susceptibility, specific heat, electrical resistivity and neutron diffraction measurements. Neutron diffraction study shows that Pr3+ ions carry an ordered moment of 2.99(7)μB/Pr3+ and align along the crystallographic±c-directions for the ions located at the (0,0,0) and positions. The magnetoresistance at 2 K and 10 T is rather large (∼35%).  相似文献   

10.
The EPR and magnetic properties were investigated on vapour phase grown Zn1−xCrxTe (0.001?x?0.005) crystal samples at room temperature. The EPR spectra were observed for samples with x=0.001, 0.002 only. The simulations of the spectra confirm Cr3+ charge state of the dopant ion at tetrahedral symmetry. The magnetic behaviour of the samples with x=0.001 and 0.002 is neither that of Brillouin paramagnets nor Van Vleck systems while the samples with compositions x=0.003, 0.004 and 0.005 exhibited hysteresis behaviour.  相似文献   

11.
Electrical resistivity and thermoelectric power (TEP) have been measured in polycrystalline sample of CeNi0.75Co0.25Al4. The magnetization measurements have been performed in oriented powder with a-axis of the crystallites parallel to the external magnetic field. All the data have been compared with its parent compound CeNiAl4. In the range 120-300 K, the Seebeck coefficient is significantly higher for alloy than for the parent material and exhibits a peak at ∼150 K. R(T)/R(300) follows a logarithmic temperature dependence for all samples above 100 K, and rapidly decreases as the temperature is lowered. The decrement is much faster in the cobalt doped samples than in the parent compound, suggesting stronger electronic correlations in the former. Inverse magnetic susceptibility in oriented powder follows a Curie-Weiss law above 100 K and shows peff=2.7 slightly higher than that of the free Ce3+ ion value of 2.5.  相似文献   

12.
Antiferromagnetic Co3O4 nanoparticles with diameter around 30 nm have been synthesized by a solution-based method. The phase identification by the wide-angle X-ray powder diffraction indicates that the Co3O4 nanoparticle has a cubic spinel structure with a lattice constant of 0.80843(2) nm. The image of field emission scanning electron microscope shows that the nanoparticles are assembled together to form nanorods. The magnetic properties of Co3O4 fine particles have been measured by a superconducting quantum interference device magnetometer. A deviation of the Néel temperature from the bulk is observed, which can be well described by the theory of finite-size scaling. An enhanced coercivity as well as a loop shift are observed in the field-cooled hysteresis loop. The exchange bias field decreases with increasing temperature and diminishes at the Néel temperature. The training effect and the opening of the loop reveal the existence of the spin-glass-like surface spins.  相似文献   

13.
The narrow band noise and the transient voltage oscillation were investigated in a k0.3MoO3 sample, which showed different I–V characteristics in the non-linear conductivity region for dc and pulse methods. For repeated current pulses, after a sufficiently long duration of dc current, the voltage response showed relaxation behavior with a relaxation time of about 30 min at 77 K. Similar relaxation was also observed for the opposite case of a dc current applied after repeated pulses. The slope of frequency of voltage oscillation against CDW current was constant through these relaxation process in both dc and pulse cases. But the peak of narrow band noise is larger and sharper after repeated pulses than in the dc stationary state. This result was understood as an enhancement of the coherent-phase region for voltage oscillation in the case of repeated pulses.  相似文献   

14.
Hg2Os2O7, which has the cubic pyrochlore structure, remains metallic down to the liquid helium temperature unlike its isostructural counterpart Cd2Os2O7, which shows metal-insulator transition at 226 K. Magnetization and heat capacity data for Hg2Os2O7 are presented. The magnetic anomaly at TN=88 K shares many characteristics in common with the metal-insulator transition in Cd2Os2O7, though Hg2Os2O7 remains metallic below TN. The heat capacity Cp shows no or very little change in the magnetic entropy around TN, supporting the view that there is no long-range ordering of localized spins. The measured value of electronic heat-capacity coefficient γ=21 mJ K−2mol−1 is comparable to the value obtained from band-structure calculation on Cd2Os2O7, suggesting that mass-enhancement is small in Hg2Os2O7. There is a pronounced peak in Cp/T3 at 13.1 K, which corresponds to a peak in the phonon density of states at 40 cm−1.  相似文献   

15.
Polycrystalline samples of ternary rare-earth germanides R2Co3Ge5 (R=La, Ce and Pr) have been prepared and investigated by means of magnetic susceptibility, isothermal magnetization, electrical resistivity and specific heat measurements. All these compounds crystallize in orthorhombic U2Co3Si5 structure (space group Ibam). No evidence of magnetic or superconducting transition is observed in any of these compounds down to 2 K. The unit cell volume of Ce2Co3Ge5 deviates from the expected lanthanide contraction, indicating non trivalent state of Ce ions in this compound. The reduced value of effective moment (μeff≈0.95 μB) compared to that expected for trivalent Ce ions further supports valence-fluctuating nature of Ce in Ce2Co3Ge5. The observed temperature dependence of magnetic susceptibility is consistent with the ionic interconfiguration fluctuation (ICF) model. Although no sharp anomaly due to a phase transition is seen, a broad Schottky-type anomaly is observed in the magnetic part of specific heat of Pr2Co3Ge5. An analysis of Cmag data suggests a singlet ground state in Pr2Co3Ge5 separated from the singlet first excited state by 22 K and a doublet second excited state at 73 K.  相似文献   

16.
We have measured the high-temperature resistivities of dilute Ti1-x Al x alloys withx0.135 up to 1100 K (2.6 D , where D is the Debye temperature). We observe that possesses a strong downward deviation from a linear temperature-dependence at high temperatures (several hundred degrees Kelvin). Eventually, saturates to a constant. This non-Bloch-Grüneisen-like behavior is compared with the predictions of current theories.  相似文献   

17.
The electronic structure of Y4Co3 has been studied based on the density functional theory within the local-density approximation. The calculation indicates that Y4Co3 is very close to ferromagnetic instability. The Fermi surfaces are composed mainly of 3d electrons of Co and 4d electrons of Y.  相似文献   

18.
The magnetic behavior of the FeInxCr2−xSe4 system (with x=0.0, 0.2 and 0.4) has been investigated by magnetic and Mössbauer spectroscopy. Hyperfine parameters indicate that iron is in the Fe2+ oxidation state, with a minor (∼9%) Fe3+ fraction, located at different layers in the structure. Low-field magnetization curves as a function of temperature showed that the antiferromagnetic (AFM) order temperature is TN=208(2) K for FeCr2Se4 and decreases to 174(3) K for FeIn0.4Cr1.6Se4. The effective magnetic moment μeff decreases with increasing In contents, and shows agreement with the expected values from the contribution of Fe2+ (5D) and Cr3+ (4F) electronic states. A second, low-temperature transition is observed at TG∼13 K, which has been assigned to the onset of a glassy state.  相似文献   

19.
20.
The thermal expansion of a single crystal of the intermetallic compound CeNiSn has been measured at low temperatures 0.3 K<T<12 K and in a magnetic field up to 8 T. A large anisotropy of the linear expansion is observed which is strongly influenced by the magnetic field. These data are interpreted within the theory explaining the origin of the quasigap in the heavy fermion spectrum of CeNiSn by the interplay between the heavy fermions and low-energy excitations in non-cubic Kondo lattices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号