首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2 Ge2 layers on W(110). In order to produce well-ordered and atomically clean surfaces of the Ce-based intermetallic system the growth was performed under UHV conditions (p<2×10-11 mbar). Both the polycrystalline CeNi2Ge2 compound and the individual elements Ce, Ni, and Ge were used as evaporants. The characterisation of the layers was made with LEED, SEM, and XPS. We find a significant influence of the substrate temperature and the evaporation power on the growth characteristics. The compound material CeNi2Ge2 exhibits complicated behaviour when evaporated. Under carefully selected growth conditions we obtain well-ordered films with a stoichiometry of Ce:Ni:Ge=1:2:2 and a (001) oriented surface of the body-centered tetragonal ThCr2Si2-type structure. The k dispersion and binding energies of the valence bands of these layers were determined with ARUPS. Received: 26 October 1997/Accepted: 27 October 1997  相似文献   

2.
3.
在本文中我们首次报道了p型掺杂的自组织Si/Ge量子点中空穴能级子带间的电子拉曼散射,此电子跃迁的能量为105meV。Si/Ge量子点Ge Ge模的共振拉曼散射表明此空穴能级间的电子拉曼散射与Γ点附近的E0(≈2.52eV)发生了共振,而E1的能量小于2.3eV.变温实验和偏振实验进一步证实了我们的指认。所有观测的实验数据与6 bandk·p能带结构理论的计算结果吻合得很好。  相似文献   

4.
黄仕华 《光子学报》2006,35(11):1676-1679
利用光电流谱的方法对锗硅量子阱结构的带间吸收边进行了研究.实验观察到了在不同的偏压和温度下,锗硅量子阱结构的带间吸收边谱线发生了有规律的变化.通过对锗硅量子阱材料的光电流谱的带间跃迁吸收边的拟合,得到了硅导带到锗价带的能带宽度分别为1.043 eV和1.050 eV.随着外加电场的增强,带边的吸收曲线向低能方向移动.通过理论计算得到了带间跃迁吸收边的漂移量与外加电场的关系,并与实验吻合较好.随着温度的降低,带间吸收边向高能方向偏移,对于这一现象给出了定性的解释,并通过拟合得到了禁带宽度随温度的变化率.  相似文献   

5.
The bulk magnetic susceptibility chi(T,B) of YbRh(2)(Si(0.95)Ge(0.05))(2) has been investigated close to the field-induced quantum critical point at B(c) = 0.027 T. For B < or= 0.05 T a Curie-Weiss law with a negative Weiss temperature is observed at temperatures below 0.3 K. Outside this region, the susceptibility indicates ferromagnetic quantum critical fluctuations, chi(T) proportional, variantT-0.6 above 0.3 K. At low temperatures the Pauli susceptibility follows chi(0) proportional, variant(B-B(c))(-0.6) and scales with the coefficient of the T(2) term in the electrical resistivity. The Sommerfeld-Wilson ratio is highly enhanced and increases up to 30 close to the critical field.  相似文献   

6.
A photoconductivity (PC) of Si/Ge/Si structures with narrow Ge layer [thickness's 1.5 and 2 monolayers (ML)] on interband light intensity has been investigated for the different values of lateral voltage U, and temperature T. In contrast to the Si/Ge structure with 2 ML, where only monotonous PC growth was registered, for the 1.5 ML structure a stepped and a fluctuated PC were observed. These PC features are explained by a percolation of photoexcited carriers via the localized states induced by one monolayer scale Si/Ge interface roughnesses.  相似文献   

7.
The current–voltage (IV) and capacitance–voltage (CV) behaviour of different Si/Ge multilayers and SiGe single layers prepared on p-type Si substrates by magnetron sputtering and annealing, has been studied in the temperature range of 80–320 K by using Al Schottky contacts as test structures. Although a significant influence of the microstructure of the Si/Ge multilayers and SiGe layers was obtained on the electrical behaviour of the structures, the structures exhibited similar specific features.  相似文献   

8.
The results of studying the energy spectrum of electrons and holes localized in second-type Ge/Si heterostructures with Ge quantum dots are presented. In such structures, holes are localized at Ge quantum dots, and electrons, in three-dimensional quantum wells, which form in Si at the Ge—Si interface because of inhomogeneous deformations that appear as a result of the difference between the Ge and Si lattice constants. It is shown that changes in the deformations in the assembly of quantum dots as a result of a variation in their spatial arrangement significantly changes the binding energy of electrons, the position of their localization at quantum dots, the binding energy and wave-function symmetry of holes at double quantum dots (artificial molecules), and the exchange interaction of electrons and holes in the exciton composition. A practically important result of the presented data is the development of approaches to increase the luminescence quantum efficiency and the absorption coefficient in assemblies of quantum dots.  相似文献   

9.
The chemical contrast between Si and Ge obtained by scanning tunneling microscopy on Bi-covered Si(111) surfaces is used as a tool to identify two vertical Ge/Si intermixing processes. During annealing of an initially pure Ge monolayer on Si, the intermixing is confined to the first two layers approaching a 50% Ge concentration in each layer. During epitaxial growth, a growth front induced intermixing process acting at step edges is observed. Because of the open atomic structure at the step edges, relative to the terraces, a lower activation barrier for intermixing at the step edge, compared to the terrace, is observed.  相似文献   

10.
11.
Ge/Si superlattices containing Ge quantum dots were prepared by molecular beam epitaxy and studied by resonant Raman scattering. It is shown that these structures possess vibrational properties of both two-and zero-dimensional objects. The folded acoustic phonons observed in the low-frequency region of the spectrum (up to 15th order) are typical for planar superlattices. The acoustic phonon lines overlap with a broad emission continuum that is due to the violation of the wave-vector conservation law by the quantum dots. An analysis of the Ge and Ge-Si optical phonons indicates that the Ge quantum dots are pseudoamorphous and that mixing of the Ge and Si atoms is insignificant. The longitudinal optical phonons undergo a low-frequency shift upon increasing laser excitation energy (2.54–2.71 eV) because of the confinement effect in small-sized quantum dots, which dominate resonant Raman scattering.  相似文献   

12.
13.
Amorphous Si/SiO2 superlattices with periodicities between 2 and 5 nm have now been grown on (1 00) Si wafers by several different techniques: molecular beam epitaxy, magnetron sputtering, and plasma enhanced chemical vapor deposition (PECVD). With the first two methods little or no hydrogen is incorporated during growth and visible photo-luminescence (PL) is obtained at wavelengths from 520 to 800 nm. The shift in the PL peak position with Si layer thickness is consistent with quantum confined band-to-band recombination. Annealing the sputtered superlattices at temperatures up to 1100°C results in a very bright red PL that is similar in intensity to that observed in porous Si samples. For large numbers of periods (e.g., 425) the PL is strongly modulated in intensity owing to optical interference within the superlattice. Similar quantum confined, but defect induced, PL is also observed in the PECVD grown superlattices, where the amorphous Si layers are heavily hydrogenated.  相似文献   

14.
The anisotropic thermoelectric transport properties of bulk silicon strained in the [111]-direction were studied by detailed first-principles calculations focusing on a possible enhancement of the power factor. Electron and hole doping were examined in a broad doping and temperature range. At low temperature and low doping an enhancement of the power factor was obtained for compressive and tensile strain in the electron-doped case and for compressive strain in the hole-doped case. For the thermoelectrically more important high-temperature and high-doping regime a slight enhancement of the power factor was only found under small compressive strain with the power factor overall being robust against applied strain. To extend our findings the anisotropic thermoelectric transport of a [111]-oriented Si/Ge superlattice was investigated. Here, the cross-plane power factor under hole doping was drastically suppressed due to quantum-well effects, while under electron doping an enhanced power factor was found. For this, we state figures of merit of ZT?=?0.2 and 1.4 at T?=?300?and 900?K for the electron-doped [111]-oriented Si/Ge superlattice. All results are discussed in terms of band structure features.  相似文献   

15.
16.
Tu  X.  Zuo  Y.  Chen  S.  Zhao  L.  Yu  J.  Wang  Q. 《Laser Physics》2008,18(4):438-441

An optical modulator is designed and fabricated based on a Si0.75Ge0.25/Si/Si0.5Ge0.5 asymmetrical superlattice structure. The device comprises a p-i-n diode made on the asymmetrical superlattice integrated with a 920-μm-long Fabry-Perot (F-P) cavity. Parameters of the rib waveguide are designed to satisfy only the fundamental-TE mode transmission. Here, 65 and 40-pm red shifts of the peak resonant were measured under the applied bias of 2.5 and ?32.0 V, respectively. The analysis shows that, besides the thermal-optical and plasma dispersion effects, the Pockels effect also contributes to such a peak shift. The corresponding calculated effective Pockels coefficient is about 0.158 pm/V.

  相似文献   

17.
18.
This paper summarizes our recent work on the study of quantum size effects (QSE) and novel physical properties of the Pb/Si (111) heterostructure. Two different types of samples were investigated. One is wedge-shaped Pb islands, and the other is atomically flat Pb thin films. With scanning tunneling microscopy (STM) manipulation, we observed an intriguing morphology dynamics of the islands that swings between two extreme energy states, like that in a classical pendulum. We show that the dynamics is a result of the competition between the QSE and the classical step free energy minimizing effect. For the second type of the samples, the QSE is studied in terms of thickness-dependent film stability, electronic structure and physical properties by using STM, angle-resolved photoemission spectroscopy (ARPES) and transport measurement. The results consistently reveal the formation of quantum well states (QWS) due to electron confinement in the films. This size effect could greatly modify the electronic structure near the Fermi level and lead to quantum oscillations in superconductivity, electron-phonon coupling and thermal expansion. The work unambiguously demonstrates the possibility of quantum engineering of physical properties of thin films by exploiting well-controlled and thickness-dependent QSE.  相似文献   

19.
Yakimov  A. I.  Bloshkin  A. A.  Kirienko  V. V.  Dvurechenskii  A. V.  Utkin  D. E. 《JETP Letters》2021,113(8):498-503
JETP Letters - It has been found that the introduction of layers of Ge/Si quantum dots in a two-dimensional photonic crystal leads to a strong (up to a factor of 5) increase in the photocurrent in...  相似文献   

20.
The tight binding approximation is employed to study the Zeeman effect for the hole ground state in a quantum dot. A method is proposed for calculating the g factor for localized states in a quantum dot. This method can be used both for hole states and for electron states. Calculations made for a Ge/Si system with quantum dots show that the g factor of a hole in the ground state is strongly anisotropic. The dependence of the g factor on the size of a germanium island is analyzed and it is shown that anisotropy of the g factor increases with the island size. It is shown that the value of the g factor is mainly determined by the contribution of the state with the angular momentum component J z =±3/2 along the symmetry axis of the germanium island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号