首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we present a redesign of a linear algebra kernel of an interior point method to avoid the explicit use of problem matrices. The only access to the original problem data needed are the matrix-vector multiplications with the Hessian and Jacobian matrices. Such a redesign requires the use of suitably preconditioned iterative methods and imposes restrictions on the way the preconditioner is computed. A two-step approach is used to design a preconditioner. First, the Newton equation system is regularized to guarantee better numerical properties and then it is preconditioned. The preconditioner is implicit, that is, its computation requires only matrix-vector multiplications with the original problem data. The method is therefore well-suited to problems in which matrices are not explicitly available and/or are too large to be stored in computer memory. Numerical properties of the approach are studied including the analysis of the conditioning of the regularized system and that of the preconditioned regularized system. The method has been implemented and preliminary computational results for small problems limited to 1 million of variables and 10 million of nonzero elements demonstrate the feasibility of the approach.  相似文献   

2.
For solving minimum cost flow problems, we develop a combinatorial interior point method based on a variant of the algorithm of Karmarkar, described in Gonzaga [3, 4]. Gonzaga proposes search directions generated by projecting certain directions onto the nullspace ofA. By the special combinatorial structure of networks any projection onto the nullspace ofA can be interpreted as a flow in the incremental graph ofG. In particular, to evaluate the new search direction, it is sufficient to choose a negative circuit subject to costs on the arcs depending on the current solution. That approach results in an O(mn 2 L) algorithm wherem denotes the number of vertices,n denotes the number of arcs, andL denotes the total length of the input data.  相似文献   

3.
This paper presents a homotopy interior point method for solving a semi-infinite programming (SIP) problem. For algorithmic purpose, based on bilevel strategy, first we illustrate appropriate necessary conditions for a solution in the framework of standard nonlinear programming (NLP), which can be solved by homotopy method. Under suitable assumptions, we can prove that the method determines a smooth interior path from a given interior point to a point w *, at which the necessary conditions are satisfied. Numerical tracing this path gives a globally convergent algorithm for the SIP. Lastly, several preliminary computational results illustrating the method are given.  相似文献   

4.
In this paper, a boundary perturbation interior point homotopy method is proposed to give a constructive proof of the general Brouwer fixed point theorem and thus solve fixed point problems in a class of nonconvex sets. Compared with the previous results, by using the newly proposed method, initial points can be chosen in the whole space of Rn, which may improve greatly the computational efficiency of reduced predictor-corrector algorithms resulted from that method. Some numerical examples are given to illustrate the results of this paper.  相似文献   

5.
In this paper, we present an interior point algorithm for solving both convex and nonconvex quadratic programs. The method, which is an extension of our interior point work on linear programming problems efficiently solves a wide class of largescale problems and forms the basis for a sequential quadratic programming (SQP) solver for general large scale nonlinear programs. The key to the algorithm is a three-dimensional cost improvement subproblem, which is solved at every interation. We have developed an approximate recentering procedure and a novel, adaptive big-M Phase I procedure that are essential to the sucess of the algorithm. We describe the basic method along with the recentering and big-M Phase I procedures. Details of the implementation and computational results are also presented.Contribution of the National Institute of Standards and Tedchnology and not subject to copyright in the United States. This research was supported in part by ONR Contract N-0014-87-F0053.  相似文献   

6.
1.IntroductionSemidefiniteprogrammingunifiesquiteanumberofstandardmathematicalprogrammingproblems,suchaslinearprogrammingproblems,quadraticminimizationproblemswithconvexquadraticconstraints.Italsofindsmanyapplicationsinengineering,control,andcombinatorialoptimization[l,2].Inthepastfewyears,aquitenumberofresearchworkbasedoninteriorpointmethodsgaveattentiontoparametricsemidefiniteprogrammingproblems[3,4]fwherediscussionsaremostlyrelatedtopostoptimalandparametricanalysis.Inthispapergwefocusoureff…  相似文献   

7.
A combined homotopy interior point method for solving general nonlinear programming is proposed. The algorithm generated by this method to Kuhn-Tucker points of the general nonlinear programming problems is proved to be globally convergent, under the “normal cone condition” about the constraints, probably without the convexity.  相似文献   

8.
In Andreani et al. (Numer. Algorithms 57:457–485, 2011), an interior point method for the horizontal nonlinear complementarity problem was introduced. This method was based on inexact Newton directions and safeguarding projected gradient iterations. Global convergence, in the sense that every cluster point is stationary, was proved in Andreani et al. (Numer. Algorithms 57:457–485, 2011). In Andreani et al. (Eur. J. Oper. Res. 249:41–54, 2016), local fast convergence was proved for the underdetermined problem in the case that the Newtonian directions are computed exactly. In the present paper, it will be proved that the method introduced in Andreani et al. (Numer. Algorithms 57:457–485, 2011) enjoys fast (linear, superlinear, or quadratic) convergence in the case of truly inexact Newton computations. Some numerical experiments will illustrate the accuracy of the convergence theory.  相似文献   

9.
Efficient methods for convex resource allocation problems usually exploit algebraic properties of the objective function. For problems with nested constraints, we show that constraint sparsity structure alone allows rapid solution with a general interior point method. The key is a special-purpose linear system solver requiring only linear time in the problem dimensions. Computational tests show that this approach outperforms the previous best algebraically specialized methods.  相似文献   

10.
Stochastic programming is recognized as a powerful tool to help decision making under uncertainty in financial planning. The deterministic equivalent formulations of these stochastic programs have huge dimensions even for moderate numbers of assets, time stages and scenarios per time stage. So far models treated by mathematical programming approaches have been limited to simple linear or quadratic models due to the inability of currently available solvers to solve NLP problems of typical sizes. However stochastic programming problems are highly structured. The key to the efficient solution of such problems is therefore the ability to exploit their structure. Interior point methods are well-suited to the solution of very large non-linear optimization problems. In this paper we exploit this feature and show how portfolio optimization problems with sizes measured in millions of constraints and decision variables, featuring constraints on semi-variance, skewness or non-linear utility functions in the objective, can be solved with the state-of-the-art solver.  相似文献   

11.
Summary In this paper an interior point method is presented for nonlinear programming problems with inequality constraints. On defining a modified distance function the original problem is solved sequentially by using a method of feasible directions. At each iteration a usable feasible direction can be determined explicitly. Under certain assumptions it can be shown that every accumulation point of the sequence of points constructed by the proposed algorithm satisfies the Kuhn-Tucker conditions.
Zusammenfassung Im vorliegenden Beitrag wird eine Innere-Punkt-Methode zur Lösung nichtlinearer Optimierungsprobleme mit Ungleichungsrestriktionen vorgestellt. Mit dem Begriff der modifizierten Distanzfunktion und mit Hilfe einer Methode der zulässigen Richtungen wird das ursprüngliche Problem sequentiell gelöst. Bei jeder Iteration kann eine brauchbare zulässige Richtung explizit angegeben werden. Unter geeigneten Voraussetzungen wird gezeigt, daß jeder Häufungspunkt der Folgenpunkte, die durch den dargestellten Algorithmus konstruiert werden, die Kuhn-Tucker-Bedingungen erfüllt.
  相似文献   

12.
 We present combinatorial interior point methods for the generalized minimum cost flow and the generalized circulation problems based on Wallacher and Zimmermann's combinatorial interior point method for the minimum cost network flow problem. The algorithms have features of both a combinatorial algorithm and an interior point method. They work towards optimality by iteratively reducing the value of a potential function while maintaining interior point solutions. At each iteration, flow is augmented along a generalized circulation, which is computed by solving a TVPI (Two Variables Per Inequality) system. The algorithms run in time, where m and n are, respectively, the number of arcs and nodes in the graph, and L is the length of the input data. Received: June 1, 2001 / Accepted: May 23, 2002-08-22 Published online: September 27, 2002 RID="*" ID="*" This research was supported in part by NSF Grants DMS 94-14438, DMS 95-27124, CDA 97-26385 and DMS 01-04282, and DOE Grant DE-FG02-92ER25126 Mathematics Subject Classification (2000): 20E28, 20G40, 20C20  相似文献   

13.
We present two strategies for warmstarting primal-dual interior point methods for the homogeneous self-dual model when applied to mixed linear and quadratic conic optimization problems. Common to both strategies is their use of only the final (optimal) iterate of the initial problem and their negligible computational cost. This is a major advantage when compared to previously suggested strategies that require a pool of iterates from the solution process of the initial problem. Consequently our strategies are better suited for users who use optimization algorithms as black-box routines which usually only output the final solution. Our two strategies differ in that one assumes knowledge only of the final primal solution while the other assumes the availability of both primal and dual solutions. We analyze the strategies and deduce conditions under which they result in improved theoretical worst-case complexity. We present extensive computational results showing work reductions when warmstarting compared to coldstarting in the range 30–75% depending on the problem class and magnitude of the problem perturbation. The computational experiments thus substantiate that the warmstarting strategies are useful in practice.  相似文献   

14.
Dual interior point methods for solving linear semidefinite programming problems are proposed. These methods are an extension of dual barrier-projection methods for linear programs. It is shown that the proposed methods converge locally at a linear rate provided that the solutions to the primal and dual problems are nondegenerate.  相似文献   

15.
16.
The objective of this paper is to construct and analyze a fitted operator finite difference method (FOFDM) for the family of time‐dependent singularly perturbed parabolic convection–diffusion problems. The solution to the problems we consider exhibits an interior layer due to the presence of a turning point. We first establish sharp bounds on the solution and its derivatives. Then, we discretize the time variable using the classical Euler method. This results in a system of singularly perturbed interior layer two‐point boundary value problems. We propose a FOFDM to solve the system above. Through a rigorous error analysis, we show that the scheme is uniformly convergent of order one with respect to both time and space variables. Moreover, we apply Richardson extrapolation to enhance the accuracy and the order of convergence of the proposed scheme. Numerical investigations are carried out to demonstrate the efficacy and robustness of the scheme.  相似文献   

17.
18.
Cutting plane methods require the solution of a sequence of linear programs, where the solution to one provides a warm start to the next. A cutting plane algorithm for solving the linear ordering problem is described. This algorithm uses the primaldual interior point method to solve the linear programming relaxations. A point which is a good warm start for a simplex-based cutting plane algorithm is generally not a good starting point for an interior point method. Techniques used to improve the warm start include attempting to identify cutting planes early and storing an old feasible point, which is used to help recenter when cutting planes are added. Computational results are described for some real-world problems; the algorithm appears to be competitive with a simplex-based cutting plane algorithm.Research partially supported by ONR Grant number N00014-90-J-1714.  相似文献   

19.
A primal interior point method for control constrained optimal control problems with PDE constraints is considered. Pointwise elimination of the control leads to a homotopy in the remaining state and dual variables, which is addressed by a short step pathfollowing method. The algorithm is applied to the continuous, infinite dimensional problem, where discretization is performed only in the innermost loop when solving linear equations. The a priori elimination of the least regular control permits to obtain the required accuracy with comparatively coarse meshes. Convergence of the method and discretization errors are studied, and the method is illustrated at two numerical examples. Supported by the DFG Research Center Matheon “Mathematics for key technologies” in Berlin. This paper appeared as ZIB Report 04-38.  相似文献   

20.
We study the problem of solving a constrained system of nonlinear equations by a combination of the classical damped Newton method for (unconstrained) smooth equations and the recent interior point potential reduction methods for linear programs, linear and nonlinear complementarity problems. In general, constrained equations provide a unified formulation for many mathematical programming problems, including complementarity problems of various kinds and the Karush-Kuhn-Tucker systems of variational inequalities and nonlinear programs. Combining ideas from the damped Newton and interior point methods, we present an iterative algorithm for solving a constrained system of equations and investigate its convergence properties. Specialization of the algorithm and its convergence analysis to complementarity problems of various kinds and the Karush-Kuhn-Tucker systems of variational inequalities are discussed in detail. We also report the computational results of the implementation of the algorithm for solving several classes of convex programs. The work of this author was based on research supported by the National Science Foundation under grants DDM-9104078 and CCR-9213739 and the Office of Naval Research under grant N00014-93-1-0228. The work of this author was based on research supported by the National Science Foundation under grant DMI-9496178 and the Office of Naval Research under grants N00014-93-1-0234 and N00014-94-1-0340.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号