共查询到20条相似文献,搜索用时 15 毫秒
1.
Palmer R.A. Doan T.M. Lloyd P.G. Jarvis B.L. Ahmed N.U. 《Plasma Chemistry and Plasma Processing》2002,22(3):335-350
Experiments were performed in a thermal plasma furnace to examine the reduction of TiO2 by hydrogen plasma. The plasma gas composition was 50% hydrogen–50% argon, the plasma torch input power was 13 kW, the TiO2 initial mass was 10 g and the processing time was varied from 10 to 90 min. The reaction product contained between 67% and 73% titanium by mass for all tests. This level of reduction was consistent with chemical equilibrium modeling. There was no detectable enhancement of reduction due to the presence of atomic hydrogen. The Ti-O microstructures produced were characterized using quantitative SEM analysis. The microstructures showed a number of similarities with structures described by previous researchers. 相似文献
2.
3.
Carboxylated,Fe‐Filled Multiwalled Carbon Nanotubes as Versatile Catalysts for O2 Reduction and H2 Evolution Reactions at Physiological pH
下载免费PDF全文
![点击此处可从《Chemistry (Weinheim an der Bergstrasse, Germany)》网站下载免费的PDF全文](/ch/ext_images/free.gif)
M. Victoria Bracamonte Dr. Michele Melchionna Dr. Antoine Stopin Angela Giulani Prof. Claudio Tavagnacco Dr. Yann Garcia Prof. Paolo Fornasiero Prof. Davide Bonifazi Prof. Maurizio Prato 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(36):12769-12777
The development of new electrocatalysts for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) at physiological pH is critical for several fields, including fuel cells and biological applications. Herein, the assembly of an electrode based on carboxyl‐functionalised hydrophilic multiwalled carbon nanotubes (MWCNTs) filled with Fe phases and their excellent performance as electrocatalysts for ORR and HER at physiological pH are reported. The encapsulated Fe dramatically enhances the catalytic activity, and the graphitic shells play a double role of efficiently mediating the electron transfer to O2 and H2O reactants and providing a cocoon that prevents uncontrolled Fe oxidation or leaching. 相似文献
4.
5.
Koo HY Lee HJ Go HA Lee YB Bae TS Kim JK Choi WS 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(4):1214-1219
We report the synthesis of graphenes with tunable properties due to the growth of needlelike iron oxide (IO) nanoparticles on their surfaces. The electrical conductivity, flexibility, and magnetic properties of graphene nanosheets (GNSs) could be tuned on demand by fine controlling both the surface coverage and the length of the IO nanoneedles. The degree of coverage of the IO nanoparticles on the surface of the GNSs made it possible to control the resulting properties of the IO/GNSs on demand. As examples of their utility, paperlike materials were generated by simple filtration, and the resulting IO/GNS nanocomposites showed extraordinary removal capacity and fast adsorption rates for As(V) and Cr(VI) ions in water. Another possible application is the preparation of multifunctional films equipped with conductivity, flexibility, and magnetic properties. The fabrication process is easy to scale up at a low cost. In addition, both the colloidal solution and film forms of the resulting IO/GNSs were effective for removal of heavy metal ions, meaning this material could be utilized for actual industrial applications. 相似文献
6.
Q He T Yuan S Wei N Haldolaarachchige Z Luo DP Young A Khasanov Z Guo 《Angewandte Chemie (International ed. in English)》2012,51(35):8842-8845
About phase: Ferromagnetic γ-Fe(2) O(3) nanowires (left in the figure) with a saturation magnetization (M(s) ) of 54.0?emu?g(-1) and coercivity of 518?Oe at room temperature, and superparamagnetic hollow α-Fe(2) O(3) nanoparticles (right) with a room-temperature M(s) of 2.9?emu?g(-1) were synthesized by the thermal decomposition of [Fe(CO)(5) ] but with the stabilizing action of maleic anhydride grafted polypropylene. 相似文献
7.
The mechanism of reduction of iron oxide by hydrogen 总被引:8,自引:0,他引:8
Precipitated iron oxide samples were characterized using temperature-programmed reduction. H2 was used as the reduction agents. The two-stage reduction was observed: Fe2O3 was reduced to Fe3O4 and then reduced to metallic Fe. The activation energy for the two reduction steps of iron oxide are 89.13 and 70.412 (kJ mol−1), respectively. The simulation by reduction models of the TPR patterns presents well fitting of unimolecular model for Fe2O3→Fe3O4 reduction and two-dimensional nucleation according to Avarmi–Erofeev model for Fe3O4→Fe. 相似文献
8.
9.
T. N. Rostovshchikova V. V. Smirnov M. V. Tsodikov O. V. Bukhtenko Yu. V. Maksimov O. I. Kiseleva D. A. Pankratov 《Russian Chemical Bulletin》2005,54(6):1418-1424
The influence of the support nature and electronic state of iron oxide nanoclusters on the catalytic properties of supported
systems was studied for dichlorobutene isomerization. A sample with a Fe content of 2.5 wt.% on the activated silica matrix
containing FeIII and FeII ions in the paramagnetic state exhibits the highest activity. The activity of iron on silica gel enhances with the appearance
of magnetically ordered nanoclusters of γ-iron oxide formed at the iron content on the catalyst as high as 15 wt.%. An increase
in the catalyst activity is favored by the formation of two states of iron (FeIII and FeII) that occurs under the synthesis conditions or during the action of a reactant.
Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1376–1382, June, 2005. 相似文献
10.
Modification of superparamagnetic iron oxide nanoparticles with poly(diallyldimethylammonium chloride) at air atmosphere
下载免费PDF全文
![点击此处可从《先进技术聚合物》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Superparamagnetic iron oxide particles with average size less than 20 nm were prepared by chemical co‐precipitation method in the air atmosphere. After that, polydimethyldiallyl ammonium chloride (PDDA) was used for wrapping iron oxide particles to obtain the core/shell nanocomposites. The parameters influencing properties of iron oxide particles and iron oxide/PDDA nanocomposites were investigated and optimized. The prepared iron oxide and nanocomposites were characterized by X‐ray diffraction (XRD) measurement, transmission electron microscopy (TEM), particle size and Zeta potential analyzer, Fourier transform infrared (FTIR) spectroscopy, and vibrating sample magnetometry (VSM), respectively. It was found that the iron oxide particles are cubic inverse spinel Fe3O4 with spherical shape. Superparamagnetic behavior of Fe3O4 with 73.114 emu/g is produced with NH4OH as precipitator, and decreased to 58.583 emu/g for Fe3O4/PDDA nanocomposites. The Zeta potential of nanocomposites is positive value. The results showed that Fe3O4/PDDA nanocomposites have excellent future using as a carrier for bonding with some negative charged particles. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
11.
以浸渍法制备的Fe2O3/γ-Al2O3为载体,采用均相沉积沉淀方法制备了Au/Fe2O3/Al2O3催化剂.该催化剂在丙烯选择催化还原NO反应中显示出很好的低温催化活性,300℃时NO被选择还原为N2的转化率可达43%,而在Au/Al2O3催化剂上,NO的转化率仅为21%.水蒸气的加入对催化剂活性的影响较小.X射线衍射结果表明,Au和Fe2O3高度分散在Al2O3载体上.吸附氢气的程序升温还原结果表明,Au与Fe2O3之间存在着强相互作用,Au的存在促进了Fe2O3的还原,Au和Fe2O3之间的协同作用可能是Au/Fe2O3/Al2O3催化剂在丙烯选择还原NO反应中具有较高低温催化活性的原因之一. 相似文献
12.
甲烷在氧化铁表面还原NO的特性与反应机理研究 总被引:1,自引:0,他引:1
在程序控温电加热水平陶瓷管反应器中,在300~1 050 ℃,对N2气氛中甲烷在氧化铁(充分氧化后的铁丝网卷)表面还原NO的特性进行了实验研究,测试了NO脱除效率、CO生成量以及反应后铁样品表面组分和微观状态的变化特点,分析了甲烷在氧化铁表面还原NO的反应机理。在此基础上,在1 000 ℃时,对模拟烟气条件下甲烷在氧化铁表面还原NO的持久性进行了实验研究。结果表明,甲烷在氧化铁表面能够高效地还原NO。在N2气氛下,在850 ℃以上达到100%的NO脱除效率。在模拟烟气中,甲烷在氧化铁表面脱除NO的能力具有很好的持久性。实验结果表明,在1 000 ℃时,采用由体积分数为2.0%的O2、16.8%的 CO2和524×10-6的 NO,N2配平的模拟烟气,1.17% CH4能够在连续100 h内保持100%的NO脱除效率,而未出现下降的趋势。对反应机理的研究结果表明,甲烷在氧化铁表面还原NO的机理包括甲烷通过再燃机理还原NO以及甲烷通过在氧化铁表面还原氧化铁为金属铁、金属铁进而直接还原NO两种主要反应机理。其中,后者为主要反应机理。 相似文献
13.
14.
新型MnOx催化剂用于低温NH3选择性催化还原NOx 总被引:10,自引:0,他引:10
首次采用低温固相法制备了无载体MnOx催化剂并将其用于NOx的低温NH3选择性催化还原. 该催化剂为晶化度极低的混合锰氧化物,部分为粒径40~60 nm的棒状晶体颗粒,其余是更细小的无定形颗粒; 催化剂的BET比表面积为150.8 m2/g, 吸附能力较强, NOx吸附量可达138.27 μmol/g. 在模拟尾气试验条件下, MnOx催化剂的低温活性很高, 80 ℃时NOx转化率即可达到98.25%; 反应产物N2选择性高于96.6%; 当通入0.01%SO2和10%H2O后,由于竞争吸附导致NOx转化率有所下降,但仍可保持在70%左右,且不利影响在停止添加SO2和H2O后逐渐消失. 相似文献
15.
The effect of calcination temperature on the physicochemical properties and catalytic performance of nano-sized Fe-K oxides for ethylbenzene dehydrogenation was investigated. The catalyst calcined at 600°C showed the highest activity. The catalytic activity of the catalysts clearly depended on the structure of the nano-sized iron catalysts. 相似文献
16.
Inductively coupled plasma atomic emission spectrometry (ICP-AES) was applied to the determination of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment. Samples were dissolved with hydrochloric acid and hydrogen peroxide. The digest was passed through a column, which was packed with a polymer resin containing a neutral organophosphorus extractant, tri-n-butylphosphate. Iron was sorbed selectively on the resin and the analytes of interest passed through the column, allowing the effective separation of them from the iron matrix. Conditions of separation were optimized. The detection limits (3σ) in solution were 10, 40, 7 and 5 μg L−1, and in pigment were 0.2, 0.8, 0.14 and 0.1 mg kg−1 for lead, arsenic, cobalt and nickel, respectively. The recoveries ranged from 95% to 107% when sample digests were spiked with 5 μg of the analytes of interest, and relative standard deviations (n = 6) were 1.5-17.6% for the determination of the spiked samples. The method was successfully applied to the determination of trace amounts of these elements in high-purity iron oxide pigment samples. 相似文献
17.
18.
19.
采用卧式程序控温电加热陶瓷管反应器,在N2和模拟烟气气氛中、300~1 100℃下,研究了SO2对甲烷在金属铁及其氧化物表面还原NO反应的影响。采用XRD等手段对反应前后铁催化剂样品的组成变化进行了表征,分析了SO2在甲烷-铁脱硝反应中的作用机理。结果表明,甲烷在金属铁及氧化铁表面能够高效率地还原NO,NO还原效率不受烟气中SO2的影响。在SO2体积分数为0.01%~0.04%的N2气氛中,温度高于700℃时,金属铁上NO还原率和SO2脱除率可同时达到100%。在SO2体积分数为0.01%~0.04%的模拟烟气中,当温度高于850℃时,NO还原效率达到90%以上;温度为950℃时,NO还原效率达到98%,SO2对NO还原效率的影响可忽略。当反应温度为1 000℃时,在含0.02%SO2的模拟烟气中,甲烷的体积分数为1.13%时,持续100 h金属铁表面上的NO还原效率都能保持95%以上。 相似文献
20.
甲烷在金属铁及氧化铁表面还原NO的研究 《燃料化学学报》2013,41(11):1393-1400
在程序控温电加热水平陶瓷管反应器、N2气氛和模拟烟气气氛及300~1 100℃时,对甲烷在金属铁及其氧化铁表面还原NO的特性进行了实验研究。为使甲烷在脱硝反应后完全燃尽以及脱硝反应过程生成的CO等中间产物完全燃尽,在第一段加热炉后串联了第二段加热炉,补充氧气,实现燃尽。结果表明,甲烷在金属铁及氧化铁表面能够高效地还原NO。在N2气氛中,在900℃以上温度范围内甲烷在金属铁表面的脱硝效率超过95%,与甲烷在氧化铁表面的脱硝效率差别很小。在模拟烟气条件下,当过量空气系数小于1.0时,在900℃以上时,甲烷在金属铁和氧化铁表面的脱硝效率都能超过90%,且未燃尽和燃尽两种条件下NO的还原率相差不大。NO同时通过金属铁的直接还原和甲烷的再燃还原两种反应机理脱除。而甲烷则通过还原氧化铁为金属铁,从而使金属铁直接还原NO可持续进行。同时,甲烷再燃反应的中间产物HCN/NH3等被氧化铁还原,从而使燃尽后的脱硝效率不下降。研究结果表明,甲烷和金属铁或氧化铁在富燃料条件下可有效地还原NO。 相似文献