首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the problem of constrained uniform rotation of two precompressed elastic disks made of different materials with friction forces in the contact region taken into account. The exact solution of the problem is obtained by the Wiener-Hopf method.An important stage in the study of rolling of elastic bodies is the Hertz theory [1] of contact interaction of elastic bodies with smoothly varying curvature in the contact region under normal compression. Friction in the contact region is assumed to be negligible. If there are tangential forces and the friction in the contact region is taken into account, then the picture of contact interaction of elastic bodies changes significantly. Although the normal contact stress distribution strictly follows the Hertz theory for bodies with identical elastic properties and apparently slightly differs from the Hertz diagram for bodies made of different materials, the presence of tangential stresses results in the splitting of the contact region into the adhesion region and the slip region. This phenomenon was first established by Reynolds [2], who experimentally discovered slip regions near points of material entry in and exit from the contact region under constrained rolling of an aluminum cylinder on a rubber base. The theoretical justification of the partial slip phenomenon in the contact region, discovered by Reynolds [2], can be found in Carter [3] and Fromm [4]. Moreover, Fromm presents a complete solution of the problem of constrained uniform rotation of two identical disks. Apparently, Fromm was the first to consider the so-called “clamped” strain and postulated that slip is absent at the point at which the disk materials enter the contact region.Ishlinskii [5, 6] gave an engineering solution of the problem on slip in the contact region under rolling friction. Considering the problem on a rigid disk rolling on an elastic half-plane, we model this problem by an infinite set of elastic vertical rods using Winkler-Zimmermann type hypotheses. Numerous papers of other authors are surveyed in Johnson’s monograph [7].The exact solution of the problem on the constrained uniform rotation of precompressed rigid and elastic disks under the assumptions of Fromm’s theory is contained in the papers [8, 9]. In the present paper, we generalize the solution obtained in [8, 9] to the case of two elastic disks made of different materials.  相似文献   

2.
We solve the axisymmetric buckling problem for a circular plate made of a shape memory alloy undergoing reverse martensite transformation under the action of a compressing load, which occurs after the direct martensite transformation under the action of a generally different (extending or compressing) load. The problem was solved without any simplifying assumptions concerning the transverse dimension of the supplementary phase transition region related to buckling. The mathematical problem was reduced to a nonlinear eigenvalue problem. An algorithm for solving this problem was proposed. It was shown that the critical buckling load under the reverse transition, which is obtained by taking into account the evolution of the phase strains, can be many times lower than the same quantity obtained under the assumption that the material behavior is elastic even for the least (martensite) values of the elastic moduli. The critical buckling force decreases with increasing modulus of the load applied at the preliminary stage of direct transition and weakly depends on whether this load was extending or compressing. In shape memory alloys (SMA), mutually related processes of strain and direct (from the austenitic into the martensite phase) or reverse thermoelastic phase transitions may occur. The direct transition occurs under cooling and (or) an increase in stresses and is accompanied by a significant decrease (nearly by a factor of three in titan nickelide) of the Young modulus. If the direct transition occurs under the action of stresses with nonzero deviator, then it is accompanied by accumulation of macroscopic phase strains, whose intensity may reach 8%. Under the reverse transition, which occurs under heating and (or) unloading, the moduli increase and the accumulated strain is removed. For plates compressed in their plane, in the case of uniform temperature distribution over the thickness, one can separate trivial processes under which the strained plate remains plane and the phase ratio has a uniform distribution over the thickness. For sufficiently high compressing loads, the trivial process of uniform compression may become unstable in the sense that, for small perturbations of the plate deflection, temperature, the phase ratio, or the load, the difference between the corresponding perturbed process and the unperturbed process may be significant. The results of several experiments concerning the buckling of SMA elements are given in [1, 2], and the statement and solution of the corresponding boundary value problems can be found in [3–11]. The experimental studies [2] and several analytic solutions obtained for the Shanley column [3, 4], rods [5–7], rectangular plates under direct [8] and reverse [9] transitions showed that the processes of thermoelastic phase transitions can significantly (by several times) decrease the critical buckling loads compared with their elastic values calculated for the less rigid martensite state of the material. Moreover, buckling does not occur in the one-phase martensite state in which the elastic moduli are minimal but in the two-phase state in which the values of the volume fractions of the austenitic and martensite phase are approximately equal to each other. This fact is most astonishing for buckling, studied in the present paper, under the reverse transition in which the Young modulus increases approximately half as much from the beginning of the phase transition to the moment of buckling. In [3–9] and in the present paper, the static buckling criterion is used. Following this criterion, the critical load is defined to be the load such that a nontrivial solution of the corresponding quasistatic problem is possible under the action of this load. If, in the problems of stability of rods and SMA plates, small perturbations of the external load are added to small perturbations of the deflection (the critical force is independent of the amplitude of the latter), then the critical forces vary depending on the value of perturbations of the external load [5, 8, 9]. Thus, in the case of small perturbations of the load, the problem of stability of SMA elements becomes indeterminate. The solution of the stability problem for SMA elements also depends on whether the small perturbations of the phase ratio and the phase strain tensor are taken into account. According to this, the problem of stability of SMA elements can be solved in the framework of several statements (concepts, hypotheses) which differ in the set of quantities whose perturbations are admissible (taken into account) in the process of solving the problem. The variety of these statements applied to the problem of buckling of SMA elements under direct martensite transformation is briefly described in [4, 5]. But, in the problem of buckling under the reverse transformation, some of these statements must be changed. The main question which we should answer when solving the problem of stability of SMA elements is whether small perturbations of the phase ratio (the volume fraction of the martensite phase q) are taken into account, because an appropriate choice significantly varies the results of solving the stability problem. If, under the transition to the adjacent form of equilibrium, the phase ratio of all points of the body is assumed to remain the same, then we deal with the “fixed phase atio” concept. The opposite approach can be classified as the “supplementary phase transition” concept (which occurs under the transition to the adjacent form of equilibrium). It should be noted that, since SMA have temperature hysteresis, the phase ratio in SMA can endure only one-sided small variations. But if we deal with buckling under the inverse transformation, then the variation in the volume fraction of the martensite phase cannot be positive. The phase ratio is not an independent variable, like loads or temperature, but, due to the constitutive relations, its variations occur together with the temperature variations and, in the framework of connected models for a majority of SMA, together with variations in the actual stresses. Therefore, the presence or absence of variations in q is determined by the presence or absence of variations in the temperature, deflection, and load, as well as by the system of constitutive relations used in this particular problem. In the framework of unconnected models which do not take the influence of actual stresses on the phase ratio into account, the “fixed phase ratio” concept corresponds to the case of absence of temperature variations. The variations in the phase ratio may also be absent in connected models in the case of specially chosen values of variations in the temperature and (or) in the external load, as well as in the case of SMA of CuMn type, for which the influence of the actual stresses on the phase compound is absent or negligible. In the framework of the “fixed phase ratio” hypothesis, the stability problem for SMA elements has a solution coinciding in form with the solution of the corresponding elastic problem, with the elastic moduli replaced by the corresponding functions of the phase ratio. In the framework of the supplementary phase transition” concept, the result of solving the stability problem essentially depends on whether the small perturbations of the external loads are taken into account in the process of solving the problem. The point is that, when solving the problem in the connected setting, the supplementary phase transition region occupies, in general, not the entire cross-section of the plate but only part of it, and the location of the boundary of this region depends on the existence and the value of these small perturbations. More precisely, the existence of arbitrarily small perturbations of the actual load can result in finite changes of the configuration of the supplementary phase transition region and hence in finite change of the critical values of the load. Here we must distinguish the “fixed load” hypothesis where no perturbations of the external loads are admitted and the “variable load” hypothesis in the opposite case. The conditions that there no variations in the external loads imply additional equations for determining the boundary of the supplementary phase transition region. If the “supplementary phase transition” concept and the “fixed load” concept are used together, then the solution of the stability problem of SMA is uniquely determined in the same sense as the solution of the elastic stability problem under the static approach. In the framework of the “variable load” concept, the result of solving the stability problem for SMA ceases to be unique. But one can find the upper and lower bounds for the critical forces which correspond to the cases of total absence of the supplementary phase transition: the upper bound corresponds to the critical load coinciding with that determined in the framework of the “fixed phase ratio” concept, and the lower bound corresponds to the case where the entire cross-section of the plate experiences the supplementary phase transition. The first version does not need any additional name, and the second version can be called as the "all-round supplementary phase transition" hypothesis. In the present paper, the above concepts are illustrated by examples of solving problems about axisymmetric buckling of a circular freely supported or rigidly fixed plate experiencing reverse martensite transformation under the action of an external force uniformly distributed over the contour. We find analytic solutions in the framework of all the above-listed statements except for the case of free support in the “fixed load” concept, for which we obtain a numerical solution.  相似文献   

3.
In the theory of elastic thin plates, the bending of a rectangular plate on the elastic foundation is also a difficult problem. This paper provides a rigorous solution by the method of superposition. It satisfies the differential equation, the boundary conditions of the edges and the free corners. Thus we are led to a system of infinite simultaneous equations. The problem solved is for a plate with a concentrated load at its center. The reactive forces from the foundation should be made to be in equilibrium with the concentrated force to see whether our calculation is correct or not.  相似文献   

4.
In the present paper a method is proposed to investigate the behaviour of the axisymmetric system consisting of an infinite thin elastic cylindrical shell submerged in an unbounded elastic medium, filled with an ideal compressible liquid and containing a vibrating spherical inclusion, under periodic dynamic action. The goal is the analysis of the so-called “resonance” phenomena; namely: finding conditions for their appearance, and possible control by means of characteristic parameters of the hydroelastic system under consideration. The technique presented in this work was developed during the realization of a project on elaboration of methods of renewal of oil production in foul wells at the Theory of Vibration Department of the S.P. Timoshenko Institute of Mechanics of the Ukrainian Academy of Science. This mathematical technique allows rewriting the general solution of the corresponding mathematical physics equations from one coordinate system to another, so as to get an exact analytical solution (as a Fourier series) of the interaction problem for a collection of rigid and elastic bodies.  相似文献   

5.
A form of squeeze film apparatus was recently described in which the movement of one plate towards the other was simulated by the continuous volume generation of liquid over the plate area. The liquid exuded from a large number of holes in the lower plate surface and formed a “continous flow” version of squeeze film apparatus with no moving parts [1]. A later paper gave derivations of equations from which squeeze film load bearing capacity could be evaluated, taking into account viscous, inertial and normal stress effects in the liquid film [2].In order to find the total load in a squeeze film system, it was necessary to obtain the relationship between the first normal stress difference and shear rate for the liquid in use, using an experimental method. At high shear rates, the jet thrust method provided these data [3,4] and from them the load bearing capacity of squeeze films of hot, polymer-thickened oil were predicted [2].A more complete test of the method is possible with a highly elastic liquid because considerable load enhancement due to extra stress is present at moderate deformation rates in squeeze film systems [1,5,6,7]. Thus a 0.1 per cent aqueous polyacrylamide solution gives well-defined load enhancement and (quite independently) the jet thrust method gives the relationship between normal stress and shear rate from which predictions of load enhancement may be made. Furthermore, convergent nozzles may be used in the jet thrust apparatus [3] to measure the stress development in an elastic liquid which is being simulateneously sheared and stretched, a situation which more closely resembles the squeeze film case than that of steady shear.  相似文献   

6.
Bending an elastic beam leads to a complicated 3D stress distribution, but the shear and transverse stresses are so small in a slender beam that a good approximation is obtained by assuming purely uniaxial stress. In this paper, we demonstrate that the same is true for a saturated poroelastic beam. Previous studies of poroelastic beams have shown that, to satisfy the Beltrami–Michell compatibility conditions, it is necessary to introduce either a normal transverse stress or shear stresses in addition to the bending stress. The problem is further complicated if lateral diffusion is permitted. In this study, a fully coupled finite element analysis (FEA) incorporating the lateral diffusion effect is presented. Results predicted by the “exact” numerical solution, including load relaxation, pore pressure, stresses and strains, are compared to an approximate analytical solution that incorporates the assumptions of simple beam theory. The applicability of the approximate beam-bending solution is investigated by comparing it to FEA simulations of beams with various aspect ratios. For “beams” with large width-to-height ratios, the Poisson effect causes vertical deflections that cannot be neglected. It is suggested that a theory of plate bending is needed in the case of poroelastic media with large width-to-height ratios. Nevertheless, use of the approximate solution yields very small errors over the range of width-to-height ratios (viz., 1–4) explored with FEA.  相似文献   

7.
集中载荷作用下弹性地基圆薄板大挠度问题的精确解   总被引:3,自引:0,他引:3  
本文处理了winkler型弹性地基上圆板受集中载荷作用的大挠度问题,第一次获得了这类问题的精确解的解析式,并用此精确解进行了具体求解,其结果可供工程直接使用,这较之已有文献中的近似处理方法具有更好的可靠性,同时也为研究大挠度理论提供了可靠的依据。  相似文献   

8.
中心集中力作用下圆薄板的固有频率—载荷特征关系   总被引:3,自引:1,他引:3  
本文讨论了中心集中静载作用下圆薄板在非线性弯曲静平衡构形附近的微幅自由振动,其静平衡问题采用问题的精确解在此基础上,用伽辽金法获得了其最低固有频率——载荷特征关系.所得结果可供这类谐振弹性元件设计中参考.  相似文献   

9.
A constructive method is developed to establish the existence of buckled states of a thin, flat elastic plate that is rectangular in shape, simply supported along its edges, and subjected to a constant compressive thrust applied normal to its two short edges. Under the assumption that the stress function and the deformation of the plate are described by the nonlinear von Kármán equations, the approach used yields information regarding not only the number of buckled states near an eigenvalue of the linearized problem, but also the continuous dependence of such states on the load parameter and the possible selection of that buckled state “preferred” by the plate. In particular, the methods used provide a rigorous approach to studying the existence of buckled states near the first eigenvalue of the linearized problem (that is, near the “buckling load”) even when the first eigenvalue is not simple.  相似文献   

10.
11.
The problem of estimating the bending stress distribution in the neighborhood of a crack located on a single line in an orthotropic elastic plate of constant thickness subjected to out-of-plane concentrated moments is examined. Using classical plate theory and integral transform techniques, the general formulae for the bending moment and twisting moment in an elastic plate containing cracks located on a single line are derived. The solution is obtained in a closed form for the case in which there is a single crack in an infinite plate subjected to symmetric concentrated moments.  相似文献   

12.
Accounting for fluid compressibility creates serious difficulties in solving the problem of oscillations of a grid of thin, slightly curved profiles in a subsonic stream. The problem has been solved in [1–3] for a widely-spaced cascade without stagger whose profiles oscillate in phase opposition. The phenomenon of aerodynamic (acoustic) resonance, which may arise in a grid in the direction transverse to the stream for definite values of the stream velocity and profile oscillation frequency, was discovered in [2]. An approximate solution of the problem in which account is not taken of the effect of the vortex trails on the gas flow has been obtained in [4]. In [5, 6] Meister studied in the exact linear formulation the problem of unsteady gas motion through an unstaggered cascade of semi-infinite plates. In [7] Meister considered a grid of profiles with finite chords, but the problem solution was not completed. The problem of subsonic gas flow through a staggered lattice whose profiles oscillate following a single law with constant phase shift was solved most completely in the studies of Kurzin [8, 9] using the method of integral equations. A method of solving the problem for the case of arbitrary harmonic oscillation laws for the lattice profiles was indicated in [10]. The results of the calculation of the unsteady aerodynamic forces for the particular case of a plate cascade without stagger are presented in [9,11], and the possibility of the occurrence of aerodynamic resonance in the cascade in the directions transverse to and along the stream is indicated.Another method of solving the problem is given in [12], in which the more general problem of unsteady subsonic gas flow through a three-dimensional cascade of plates is solved. In the present study this method is applied to the solution of the problem of oscillations of staggered plate cascades in a two-dimensional subsonic gas flow. The results are presented of an electronic computer calculation of the unsteady aerodynamic characteristics of the cascade profiles, which show the essential influence of fluid compressibility on these characteristics. In particular, a sharp decrease of the aerodynamic damping in the acoustic resonance regimes is obtained.  相似文献   

13.
The plane stability problem for a rectangular, linearly elastic, isotropic plate with a central crack is solved. The dependence of the critical load on the crack length is studied using exact (the three-dimensional linearized theory of stability of elastic bodies) and approximate (beam approximation) approaches. The results produced by the beam approach are evaluated.Translated from Prikladnaya Mekhanika, Vol. 40, No. 11, pp. 117–126, November 2004.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

14.
The study of actions of high-speed moving loads on bridges and elevated tracks remains a topical problem for transport. In the present study, we propose a new method for moving load analysis of elevated tracks (monorail structures or bridges), which permits studying the interaction between two strained objects consisting of rod systems and rigid bodies with viscoelastic links; one of these objects is the moving load (monorail rolling stock), and the other is the carrying structure (monorail elevated track or bridge). The methods for moving load analysis of structures were developed in numerous papers [1–15]. At the first stage, when solving the problem about a beam under the action of the simplest moving load such as a moving weight, two fundamental methods can be used; the same methods are realized for other structures and loads. The first method is based on the use of a generalized coordinate in the expansion of the deflection in the natural shapes of the beam, and the problem is reduced to solving a system of ordinary differential equations with variable coefficients [1–3]. In the second method, after the “beam-weight” system is decomposed, just as in the problem with the weight impact on the beam [4], solving the problem is reduced to solving an integral equation for the dynamic weight reaction [6, 7]. In [1–3], an increase in the number of retained forms leads to an increase in the order of the system of equations; in [6, 7], difficulties arise when solving the integral equations related to the conditional stability of the step procedures. The method proposed in [9, 14] for beams and rod systems combines the above approaches and eliminates their drawbacks, because it permits retaining any necessary number of shapes in the deflection expansion and has a resolving system of equations with an unconditionally stable integration scheme and with a minimum number of unknowns, just as in the method of integral equations [6, 7]. This method is further developed for combined schemes modeling a strained elastic compound moving structure and a monorail elevated track. The problems of development of methods for dynamic analysis of monorails are very topical, especially because of increasing speeds of the rolling stock motion. These structures are studied in [16–18].In the present paper, the above problem is solved by using the method for the moving load analysis and a step procedure of integration with respect to time, which were proposed in [9, 19], respectively. Further, these components are used to enlarge the possibilities of the substructure method in problems of dynamics. In the approach proposed for moving load analysis of structures, for a substructure (having the shape of a boundary element or a superelement) we choose an object moving at a constant speed (a monorail rolling stock); in this case, we use rod boundary elements of large length, which are gathered in a system modeling these objects. In particular, sets of such elements form a model of a monorail rolling stock, namely, carriage hulls, wheeled carts, elements of the wheel spring suspension, models of continuous beams of monorail ways and piers with foundations admitting emergency subsidence and unilateral links. These specialized rigid finite elements with linear and nonlinear links, included into the set of earlier proposed finite elements [14, 19], permit studying unsteady vibrations in the “monorail train-elevated track” (MTET) system taking into account various irregularities on the beam-rail, the pier emergency subsidence, and their elastic support by the basement. In this case, a high degree of the structure spatial digitization is obtained by using rods with distributed parameters in the analysis. The displacements are approximated by linear functions and trigonometric Fourier series, which, as was already noted, permits increasing the number of degrees of freedom of the system under study simultaneously preserving the order of the resolving system of equations.This approach permits studying the stress-strain state in the MTET system and determining accelerations at the desired points of the rolling stock. The proposed numerical procedure permits uniquely solving linear and nonlinear differential equations describing the operation of the model, which replaces the system by a monorail rolling stock consisting of several specialized mutually connected cars and a system of continuous beams on elastic inertial supports.This approach (based on the use of a moving substructure, which is also modeled by a system of boundary rod elements) permits maximally reducing the number of unknowns in the resolving system of equations at each step of its solution [11]. The authors of the preceding investigations of this problem, when studying the simultaneous vibrations of bridges and moving loads, considered only the case in which the rolling stock was represented by sufficiently complicated systems of rigid bodies connected by viscoelastic links [3–18] and the rolling stock motion was described by systems of ordinary differential equations. A specific characteristic of the proposed method is that it is convenient to derive the equations of motion of both the rolling stock and the bridge structure. The method [9, 14] permits obtaining the equations of interaction between the structures as two separate finite-element structures. Hence the researcher need not traditionally write out the system of equations of motion, for example, for the rolling stock (of cars) with finitely many degrees of freedom [3–18].We note several papers where simultaneous vibrations of an elastic moving load and an elastic carrying structure are considered in a rather narrow region and have a specific character. For example, the motion of an elastic rod along an elastic infinite rod on an elastic foundation is studied in [20], and the body of a car moving along a beam is considered as a rod with ten concentrated masses in [21].  相似文献   

15.
研究Winkler地基上正交各向异性矩形薄板弯曲方程所对应的Hamilton正则方程, 计算出其对边滑支条件下相应Hamilton算子的本征值和本征函数系, 证明该本征函数系的辛正交性以及在Cauchy主值意义下的完备性, 进而给出对边滑支边界条件下Hamilton正则方程的通解, 之后利用辛叠加方法求出Winkler地基上四边自由正交各向异性矩形薄板弯曲问题的解析解. 最后通过两个具体算例验证了所得解析解的正确性.  相似文献   

16.
In the problem of the hypersonic flow of a nonviscous thermally nonconducting gas over thin blunt bodies which are close to two-dimensional the solution is constructed in the entropy layer. The construction is achieved by a generalization of the method developed ia [1] in application to bodies close to two-dimensional. The use of an approximate model identifying the effect of the blunting on the gas with the effect of a concentrated force distributed over the edge is important in the construction. The solution is represented in the form of asymptotic expansions. The equations of the hypersonic theory of small perturbations, which is the null approximation in the process of construction of the solution in the form of a series in powers of a small parameter determined as the square of the relative thickness of the body or the relative width of the perturbed region, are obtained in the null approximation in this case. The surface of the blunt body proves to be singular for the null approximation, since the entropy function p/?x grows without limit as the surface is approached. The attempt to construct the succeeding approximations leads to strengthening of the singularity. This necessitates the use of the method of deformed coordinates (the PLG method). Basic to the latter is the removal of the singularity, which is not inherent to the exact solution of the problem, through asymptotic expansions with respect to a small parameter not only of the unknown variables, but also of the independent variables, with the subsequent determination of the deformation of the independient variables on the basis of the “quenching” of the singularity. Use of the PLG method allows one to construct a solution which is uniformly applicable in the entire stream, including the entropy layer. In practice, the construction of such a solution leads to the determination of the displacement of the streamlines near the surface of the body, as a result of which the singularity is “absorbed” by the body and the solution outside the body proves to be freed of the singularity. In the null approximation this displacement of the streamlines can be determined in closed form.  相似文献   

17.
We prove the duality of solutions for the problem of determining the boundary conditions on two opposite sides of a rectangular plate from the frequency spectrum of its bending vibrations. A method for determining the boundary conditions on two opposite sides of a rectangular plate from nine natural frequencies is obtained. The results of numerical experiments justifying the theoretical conclusions of the paper are presented. Rectangular plates are widely used in various technical fields. They serve as printed circuit boards and header plates, bridging plates, aircraft and ship skin, and parts of various mechanical structures [1–4]. If the plate fixing cannot be inspected visually, then one can use the natural bending vibration frequencies to find faults in the plate fixing. For circular and annular plates, methods for testing the plate fixing were found in [5–7], where it was shown that the type of fixing of a circular or annular plate can be determined uniquely from the natural bending vibration frequencies. The following question arises: Is it possible to determine the type of fixing of a rectangular plate on two opposite sides of the plate from the natural bending vibration frequencies if the other two sides are simply supported? Since the opposite sides of the plate are equivalent to each other, a plate with “rigid restraint—free edge” fixing will sound exactly the same as a plate with “free edge—rigid restraint” fixing. Hence we cannot say that the type of fixing of a rectangular plate on two opposite sides can be uniquely determined from its natural bending vibration frequencies. But it turns out that we can speak of duality in the solution of this problem. Here we observe an analogy with the problem of determining the rigidity coefficients of springs for elastic fixing of a string [8]: the rigidity coefficients of the springs are determined by the natural frequencies uniquely up to permutations of the springs.  相似文献   

18.
In [1] an investigation was made of jet flow around an elastic plate. Below, in an exact nonlinear statement, a study is made of the problem of jet flow around an elastic cylindrical shell, fastened at one end and having the second end free. With certain limitations on the form of the shell, the single-valued solvability of the problem is demonstrated, and a method for its solution is proposed. Some results of calculations are given. A statement and a solution of the inverse problem of static hydroelasticity are also given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 24–32, March–April, 1977.  相似文献   

19.
We study the problem on the stability of the equilibrium of a compressed homogeneous nonlinearly elastic body having the shape of a rectangular parallelepiped (block). The conditions of free sliding along the block face planes (with possible separation) are posed on all but one block faces. On the remaining face, a normal pressing “dead” load uniformly distributed over the surface is given. We obtain strict upper and lower bounds for the critical values of compression stresses, which coincide in order of magnitude with the characteristic elastic moduli of the material in the equilibrium under study; these estimates are independent of the relations between the block dimensions in the entire range of possible variation of the latter. The result indirectly confirms that the primary instability in the problem under study has a surface character (is localized near the kinematically free face with a given load) for any relations between the block dimensions and is characterized by the absence of separation from the basement even for an arbitrarily thin plate. This also implies that the “cantilever approximation” (whose application to similar problems has been attempted in the literature) cannot be used for the stability analysis in this situation in principle.  相似文献   

20.
Similarity transformations are constructed and used to obtain an exact solution for the axisymmetric boundary value problem of a homogeneous isotropic elastic semi-space subjected to a concentrated torque normal to its surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号