首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the modified carbon paste electrode (CPE) with an imidazole derivative 2‐(2,3 dihydroxy phenyl) 4‐methyl benzimidazole (DHPMB) and reduced graphene oxide (RGO) was used as an electrochemical sensor for electrocatalytic oxidation of N‐acetyl‐L‐cysteine (NAC). The electrocatalytic oxidation of N‐acetyl‐L‐cysteine on the modified electrode surface was then investigated, indicating a reduction in oxidative over voltage and an intensive increase in the current of analyte. The scan rate potential, the percentages of DHPMB and RGO, and the pH solution were optimized. Under the optimum conditions, some parameters such as the electron transfer coefficient (α) between electrode and modifier, and the electron transfer rate constant) ks) in a 0.1 M phosphate buffer solution (pH=7.0) were obtained by cyclic voltammetry method. The diffusion coefficient of species (D) 3.96×10?5 cm2 s?1 was calculated by chronoamperometeric technique and the Tafel plot was used to calculate α (0.46) for N‐ acetyl‐L‐cysteine. Also, by using differential pulse voltammetric (DPV) technique, two linear dynamic ranges of 2–18 µM and 18–1000 µM with the detection limit of 61.0 nM for N‐acetyl‐L‐cysteine (NAC) were achieved. In the co‐existence system of N‐acetyl‐L‐cysteine (NAC), uric acid (UA) and dopamine (DA), the linear response ranges for NAC, UA, and DA are 6.0–400.0 µM, 5.0–50.0 µM and 2.0–20.0 µM, respectively and the detection limits based on (C=3sb/m) are 0.067 µM, 0.246 µM and 0.136 µM, respectively. The obtained results indicated that DHPMB/RGO/CPE is applicable to separate NAC, uric acid (UA) and dopamine (DA) oxidative peaks, simultaneously. For analytic performance, the mentioned modified electrode was used for determination of NAC in the drug samples with acceptable results, and the simultaneous determination of NAC, UA and DA oxidative peaks was investigated in the serum solutions, too.  相似文献   

2.
A voltammetric method using a poly(1‐methylpyrrole) modified glassy carbon electrode was developed for the quantification of adrenaline. The modified electrode exhibited stable and sensitive current responses towards adrenaline. Compared with a bare GCE, the modified electrode exhibits a remarkable shift of the oxidation potentials of adrenaline in the cathodic direction and a drastic enhancement of the anodic current response. The separation between anodic and cathodic peak potentials (ΔEp) for adrenaline is 30 mV in 0.1 M phosphate buffer solution (PBS) at pH 4.0 at modified glassy carbon electrodes. The linear current response was obtained in the range of 7.5 × 10?7 to 2.0 × 10?4 M with a detection limit of 1.68 × 10?7 M for adrenaline by square wave voltammetry. The poly(1‐methypyrrole)/GCE was also effective to simultaneously determine adrenaline, ascorbic acid and uric acid in a mixture and resolved the overlapping anodic peaks of these three species into three well‐defined voltammetric peaks in cyclic voltammetry. The modified electrode has been successfully applied for the determination of adrenaline in pharmaceuticals. The proposed method showed excellent stability and reproducibility.  相似文献   

3.
A highly sensitive electrochemical biosensor for the detection of trace amounts of 8‐azaguanine has been designed. Double stranded (ds)DNA molecules are immobilized onto a glassy carbon electrode surface with Langmuir–Blodgett technique. The adsorptive voltammetric behaviors of 8‐azaguanine at DNA‐modified electrode were explored by means of cyclic voltammetry and square wave voltammetry. Compared with bare glassy carbon electrode (GCE), the Langmuir–Blodgett film modified electrode can greatly improve the measuring sensitivity of 8‐azaguanine. Under the optimum experimental conditions, the Langmuir–Blodgett film modified electrode in pH 3.0 Britton–Robinson buffer solutions shows a linear voltammetric response in the range of 5.0×10?8 to 1.0×10?5 mol L?1 with detection limit 9.0×10?9 mol L?1. The method proposed was applied successfully for the determination of 8‐azaguanine in diluted human urine with wonderful satisfactory.  相似文献   

4.
《Electroanalysis》2004,16(11):915-921
Voltammetric behavior of two mercaptopyrimidine derivatives (2‐thiouracil and 2‐thiobarbituric acid) has been studied by cyclic voltammetry at a cobalt phthalocyanine (CoPc)‐modified carbon‐paste electrode. The results of voltammetric determinations showed that the CoPc in the matrix of modified electrode acts as catalyst for electrooxidation of these thiols (RSH), lowering the overpotential of the reaction and significantly increasing the sensitivity for detection of thiols in neutral conditions. The results of voltammetric and polarization measurements in solutions with various pHs were used for prediction of the mechanism of electrocatalytic oxidation at the surface of modified electrode. These results showed that at the modified electrode, electrochemical oxidation of thiolate anion (RS?) is the rate‐determining step. It was found that the modified electrode exhibits good selectivity for catalytic oxidation of mercaptopyrimidines over other biologically important mercaptans such as cysteine, glutathione and thioglycolic acid. The results demonstrate that the peak current for thiol oxidation has a linear variation with the concentration in the range of 1×10?2–1×10?5 M. This system can be used for sensitive and selective voltammetric detection of mercaptopyrimidine derivatives.  相似文献   

5.
A modified electrode was fabricated by grafting of poly (2,6‐pyridinedicarboxylic acid) film (PDC) by electropolymerization of 2,6‐pyridinedicarboxylic acid on the glassy carbon electrode (GCE). Then, gold nanoparticles (NG) and 1,2‐naphthoquinone‐4‐sulfonic acid sodium (Nq) were immobilized on the PDC/GCE to prepare Nq/NG/PDC/GCE by immersing electrode into NG and Nq solution, respectively. The Nq species on NG/PDC/GCE could catalyze electrooxidation of N‐acetyl‐L ‐cysteine (NAC) with lowering the over potential by about 600 mV. This method used for detection of NAC in dynamic range from 4.0×10?6 M to 1.30×10?4 M with a detection of limit (2σ) 8.0×10?7 M.  相似文献   

6.
《Electroanalysis》2006,18(17):1722-1726
The electrochemical properties of L ‐cysteic acid studied at the surface of p‐bromanil (tetrabromo‐p‐benzoquinone) modified carbon paste electrode (BMCPE) in aqueous media by cyclic voltammetry (CV) and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00) in cyclic voltammetry, the oxidation of L ‐cysteic acid at the surface of BMCPE occurs at a half‐wave potential of p‐bromanil redox system (e.g., 100 mV vs. Ag|AgCl|KClsat), whereas, L ‐cysteic acid was electroinactive in the testing potential ranges at the surface of bare carbon paste electrode. The apparent diffusion coefficient of spiked p‐bromanil in paraffin oil was also determined by using the Cottrell equation. The electrocatalytic oxidation peak current of L ‐cysteic acid exhibits a linear dependency to its concentration in the ranges of 8.00×10?6 M–6.00×10?3 M and 5.2×10?7 M–1.0×10?5 M using CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (2σ) were determined as 5.00×10?6 M and 4.00×10?7 M by CV and DPV methods. This method was used as a new, selective, rapid, simple, precise and suitable voltammetric method for determination of L ‐cysteic acid in serum of patient's blood with migraine disease.  相似文献   

7.
The electrochemical behavior of L ‐cysteine studied at the surface of ferrocenedicarboxylic acid modified carbon paste electrode (FDCMCPE) in aqueous media using cyclic voltammetry, differential pulse voltammetry and double potential step chronoamperometry. It has been found that under optimum condition (pH 8.00) in cyclic voltammetry, the oxidation of L ‐cysteine occurs at a potential about 200 mV less positive than that of an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α, and catalytic reaction rate constant, kh were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of L ‐cysteine showed a linear dependent on the L ‐cysteine concentration and linear analytical curves were obtained in the ranges of 3.0×10?5 M–2.2×10?3 M and 1.5×10?5 M–3.2×10?3 M of L ‐cysteine concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (3σ) were determined as 2.6×10?5 M and 1.4×10?6 M by CV and DPV methods.  相似文献   

8.
The electrochemical behavior of aloe‐emodin (AE), an important herbal antitumor drug, was investigated at a carbon‐coated nickel magnetic nanoparticles modified glassy carbon electrode (CNN/GCE). A couple of well‐defined redox peaks was obtained. Some electrochemical parameters of AE at a CNN/GCE, such as the charge number, exchange current density, standard heterogeneous rate constant, were measured. The square wave voltammetry (SWV) response of AE was linear with the concentration over two concentration intervals viz. 6.24×10?9?1.13×10?6 M and 1.13×10?6?1.23×10?5 M, with a detection limit of 2.08 nM. A fast, simple and sensitive detection and analysis of AE was developed.  相似文献   

9.
2‐chlorobenzoyl ferrocene, was synthesized and used to construct a modified ZnO‐CuO nanoplates modified carbon paste electrode. The electrooxidation of captopril at the surface of the modified electrode was studied. Under the optimized conditions, the square wave voltammetric (SWV) peak current of captopril increased linearly with captopril concentration in the range of 5.0×10?7 to 9.0×10?4 M and detection limit of 90.0 nM was obtained for captopril. The diffusion coefficient and kinetic parameters (such as electron transfer coefficient and the heterogeneous rate constant) for captopril oxidation were also determined. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of captopril and tryptophan which makes it suitable for the detection of captopril in the presence of tryptophan in real samples.  相似文献   

10.
《Electroanalysis》2005,17(24):2231-2238
Square‐wave voltammetric detection of dopamine was studied at a copper (Cu)‐(3‐mercaptopropyl) trimethoxy silane (MPS)‐complex modified electrode (Cu‐MPS). The modification of the electrode was based on the attachment of MPS onto an electrochemically activated glassy carbon electrode (GCE) by the interaction between methoxy silane groups of MPS and surface hydroxyl groups and followed by the complexation of copper with the thiol groups of MPS. The surface of the modified electrode was further coated by a thin layer of Nafion film. The surface of the Nafion coated MPS‐Cu complex modified electrode (Nafion/Cu‐MPS) was characterized using cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM), scanning electron microscope (SEM), X‐ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT‐IR) spectrometry. The modified electrode exhibited an excellent electrocatalytic activity towards the oxidation of dopamine, which was oxidized at a reduced potential of +0.35 V (vs. Ag/AgCl) at a wider pH range. Various experimental parameters, such as the amount of copper, the pH, and the temperature were optimized. A linear calibration plot was obtained in the concentration range between 8.0×10?8 M and 5.0×10?6 M and the detection limit was determined to be 5.0×10?8 M. The other common biological compounds including ascorbic acid did not interfere and the modified electrode showed an excellent specificity to the detection of dopamine. The Nafion/Cu‐MPS modified electrode can be used for about 2 months without any significant loss in sensitivity.  相似文献   

11.
For the first time, a novel carbon nanotube bed electrode impregnated with silver–nanoparticles (AgNPs) for the determination of trace amounts of gabapentin (GBP) is described. We synthesized the AgNPs via a new procedure. The voltammetric behavior of the electrode was investigated by cyclic voltammetry. There were linear relationships in the ranges from 3.1×10?9 to 2.9×10?2 M and from 1.0×10?8 to 1.0×10?2 GBP with square wave and differential pulse voltammetric peak currents, respectively. The detection limits were 5.6×10?10 and 9.7×10?9 M, respectively. The electrode showed excellent response over a period of 2 months and was successfully applied in human plasma and pharmaceutical capsular products.  相似文献   

12.
A novel carbon paste electrode modified with ZrO2 nanoparticles and an ionic liquid (n-hexyl-3- methylimidazolium hexafluorophosphate) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of dopamine and uric acid is described. The electrode was also employed to study the electrochemical oxidation of dopamine and uric acid, using cyclic voltammetry, chronoamperometry and square wave voltammetry as diagnostic techniques. Square wave voltammetry exhibits linear dynamic range from 1.0 × 10?6 to 9.0 × 10?4 M for dopamine. Also, square wave voltammetry exhibits linear dynamic range from 9.0 × 10?6–1.0 × 10?3 M for uric acid. The modified electrode displayed strong function for resolving the overlapping voltammetric responses of dopamine and uric acid into two well-defined voltammetric peaks. In the mixture containing dopamine and uric acid, the two compounds can be well separated from each other with potential difference of 155 mV, which is large enough to determine dopamine and uric acid individually and simultaneously. Finally, the modified electrode was used for determination of dopamine and uric acid in real samples.  相似文献   

13.
A carbon paste electrode spiked with 1‐[4‐ferrocenyl ethynyl) phenyl]‐1‐ethanone (4FEPE) was constructed by incorporation of 4FEPE in graphite powder‐paraffin oil matrix. It has been shown by direct current cyclic voltammetry and double step chronoamperometry that this electrode can catalyze the oxidation of tryptophan (Trp) in aqueous buffered solution. It has been found that under optimum condition (pH 7.00), the oxidation of Trp at the surface of such an electrode occurs at a potential about 200 mV less positive than at an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and rate constant for the chemical reaction between Trp and redox sites in 4FEPE modified carbon paste electrode (4FEPEMCPE) were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of Trp showed a linear dependent on the Trp concentrations and linear calibration curves were obtained in the ranges of 6.00×10?6 M–3.35×10?3 M and 8.50×10?7 M–6.34×10?5 M of Trp concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 1.80×10?6 M and 5.60×10?7 M by CV and DPV methods. This method was also examined as a selective, simple and precise new method for voltammetric determination of tryptophan in real sample.  相似文献   

14.
A new sensor, gold‐6‐amino‐2‐mercaptobenzothiazole (6A2MBT), was fabricated via a self‐assembly procedure. Electrochemical properties of the monolayer were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The modified electrode showed excellent antifouling property against the oxidation products of DA, allowed us to construct a dynamic calibration curve with two linear parts, 1.00×10?6 to 3.72×10?4 and 3.72×10?4 to 6.42×10?4 M DA, with correlation coefficients of 0.997 and 0.992 and a detection limit of 1.57×10?7 M DA by using differential pulse voltammetry (DPV), respectively. Finally, the performance of the Au‐6A2MBT modified electrode was successfully tested for electrochemical detection of DA in a pharmaceutical sample.  相似文献   

15.
《Electroanalysis》2005,17(22):2043-2051
The electrochemical behavior of L ‐cysteine studied at the surface of ferrocenecarboxylic acid modified carbon paste electrode (FCMCPE) in aqueous media using cyclic voltammetry and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00) in cyclic voltammetry, the oxidation of L ‐cysteine is occurs at a potential about 580 mV less positive than that an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and catalytic reaction rate constant, Kh were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of L ‐cysteine showed a linear dependent on the L ‐cysteine concentration and linear calibration curves were obtained in the ranges of 10?5 M–10?3 M and 4.1×10?8 M–3.7×10?5 M of L ‐cysteine concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (2δ) were determined as 2.4×10?6 M and 2.5×10?8 M by CV and DPV methods. This method was also examined for determination of L ‐cysteine in some samples, such as Soya protein powder, serum of human blood by using recovery and standard addition methods.  相似文献   

16.
A glassy carbon electrode modified with per‐6‐amino‐β‐cyclodextrin (β‐CDNH2) and functionalized single‐walled carbon nanotubes (SWCNT‐COOH) was elaborated. This structure was investigated for the detection of dopamine acid (DA) in presence of ascorbic acid (AA). The sensor behavior was studied by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The analysis results show that the electrode modification with CD derivative improves the sensitivity and selectivity of the DA recognition; the electrochemical response was further improved by introduction of SWCNT‐COOH. The sensor shows good and reversible linear response toward DA within the concentration range of 7×10?7–10?4 M with a detection limit of 5×10?7 M.  相似文献   

17.
A novel electrochemical sensor for sensitive detection of methyldopa at physiological pH was developed by the bulk modification of carbon paste electrode (CPE) with graphene oxide nanosheets and 3‐(4′‐amino‐3′‐hydroxy‐biphenyl‐4‐yl)‐acrylic acid (3,′AA). Applying square wave voltammetry (SWV), in phosphate buffer solution (PBS) of pH 7.0, the oxidation current increased linearly with two concentration intervals of methyldopa, one is 1.0×10?8–1.0×10?6 M and the other is 1.0×10?6–4.5×10?5 M. The detection limit (3σ) obtained by SWV was 9.0 nM. The modified electrode was successfully applied for simultaneous determination of methyldopa and hydrochlorothiazide. Finally, the proposed method was applied to the determination of methyldopa and hydrochlorothiazide in some real samples.  相似文献   

18.
A fullerene‐C60‐modified gold electrode is employed for the determination of dopamine in the excess of ascorbic acid using square‐wave voltammetry. Based on its strong catalytic function towards the oxidation of dopamine and ascorbic acid, the overlapping voltammetric response of both the biomolecules at the bare electrode is resolved into two well‐defined voltammetric peaks with lowered oxidation potential and enhanced oxidation currents. Linear calibration curves for dopamine are obtained using square‐wave voltammetry over the concentration range 1 nM–5.0 μM in 0.1 M phosphate buffer solution at pH 7.2 with a correlation coefficient of 0.9931 and the detection limit (3σ) is estimated to be 0.26×10?9 M. The interference studies showed that the presence of physiologically common interferents (i.e. uric acid, citric acid, tartaric acid, glucose and sodium chloride) negligibly affects the response of dopamine. The practical analytical utility of the method is illustrated by quantitative determination of dopamine in commercially available pharmaceutical formulation and human body fluids, viz. urine and blood plasma, without any preliminary treatment.  相似文献   

19.
The voltammetric behavior of paraquat was investigated at hydroxyapatite‐modified carbon paste electrode HAP‐CPE in K2SO4. A method was developed for the detection of the trace of this herbicide, based on their redox reaction. The reduction peaks of paraquat were observed around ?0.70 V and ?1.00 V (vs. SCE) in square‐wave voltammetry. Experimental conditions were optimized by varying the accumulation time, apatite loading and measuring solution pH. Calibration plots were linear under the optimized parameters over the herbicide's concentration range 8–200×10?7 mol L?1, with a detection and quantification limits about 1.5×10?8 mol L?1 and 6.4 10?8 mol L?1, respectively.  相似文献   

20.
Using 3‐Aminopropyltriethoxysilane(APTES) as a single silica source, an amino‐rich ultrafine organosilica‐nanoparticle‐modified Au electrode was fabricated, following the formation of (3‐mercaptopropyl)‐trimethoxysilane (MPTS) monolayer on Au surface (MPTS/Au). With cetyltrimethylammonium bromide as an additive, APTES‐based gel particles on the electrode have a narrow particle size distribution of 4–7 nm and “crystal‐like” structure. AFM and electrochemical characterization confirmed the successful grafting of APTES nanoparticles on MPTS/Au. The APTES/MPTS/Au electrode is highly sensitive for the detection of copper(II) ions with a detection limit as low as 1.6×10?12 mol L?1 (S/N>3) by square wave voltammetry. The current is linear to copper(II) concentration between 1.6×10?12 and 6.25×10?10 mol L?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号