首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rational differential quadrature method in irregular domains (RDQMID) is investigated to deal with a kind of singularly perturbed problems with boundary layers. Through a transformation, the boundary layer, which may be not straight, is transformed into a segment of a line parallel to one of the Cartesian axes. The rational differential quadrature method (RDQM) is applied to discretize the governing equation. Finally, a direct expansion method of the boundary conditions (DEMBC) is raised to deal with the boundary conditions. Numerical experiments show that RDQMID is of high accuracy, efficiency and easy to programme.  相似文献   

2.
Numerical solutions to transient nonlinear diffusion problems are obtained by the method of differential quadrature. The accuracy of the solutions is inferred by comparison with the analytical solution for the linear case. The particular problems associated with general boundary conditions are handled by the use of integral methods. Examples from heat diffusion include composite media and radiation-enhanced conduction.  相似文献   

3.
Limit analysis is a useful tool for design and safety assessment of structures in civil and geotechnical engineering. In the present study, a newly developed high order algorithm-the weak form quadrature element method is reformulated for upper bound limit analysis. The dual formulations of the kinematic theorem are employed with the nodal stresses chosen as the optimization variables. The weak form equilibrium constraint is numerically integrated by Lobatto integration and then the nodal derivatives are approximated by differential quadrature analogue. The resulting optimization problem is formulated as a standard second-order cone programming problem and solved by the optimization toolbox Mosek. This paper aims to improve the efficiency of the existing numerical limit algorithms especially for problems with singularities such as cracked structures and to overcome the well-known volumetric locking occurred for incompressible materials. Some numerical tests are given to show the accuracy and efficiency of the present method.  相似文献   

4.
5.
Sandwich structures are widely used in many engineering fields. It is possible but not easy for an engineering theory to recover all stresses accurately. In this paper, a modeling strategy is proposed to simplify the formulation. A classical sandwich panel is firstly divided into three parts, equations of the top and bottom face sheets are used as the boundary conditions of the two-dimensional core and then only the core needs to be analyzed by the differential quadrature method (DQM). In this way, both displacement and stress can be accurately obtained. Detailed formulations are worked out. Three boundary conditions and three types of loading, including the concentrated load regarded as a challenging problem for point discrete methods such as the DQM, are considered to investigate the effect of boundary conditions and loading on the distributions of displacement and stress. For verification, results are compared with theoretical solutions or/and numerical data. Presented data may be a reference for other investigators to develop more accurate engineering beam theory or new numerical method.  相似文献   

6.
Numerical simulation of two-dimensional transient seepage is developed using radial basis function-based differential quadrature method (RBF-DQ). To the best of the authors’ knowledge, this is the first application of this method to seepage analysis. For the general case of irregular geometry and unstructured node distribution, the local form of RBF-DQ was used. The multiquadric type of radial basis functions was selected for the computations, and the results were compared with analytical, finite element method, and existing numerical solutions from the literature. Results of this study show that localized RBF-DQ can produce accurate results for the analysis of seepage. The method is meshfree and easy to program, but as with previous applications of RBFs, requires careful selection of suitable shape parameters. A practical method for estimating suitable shape parameters is discussed. For time integration, Crank–Nicolson, Galerkin and finite difference methods were applied, leading to stable results.  相似文献   

7.
In this article, a combination of the finite element (FE) and differential quadrature (DQ) methods is used to solve the eigenvalue (buckling and free vibration) equations of rectangular thick plates resting on elastic foundations. The elastic foundation is described by the Pasternak (two-parameter) model. The three dimensional, linear and small strain theory of elasticity and energy principle are employed to derive the governing equations. The in-plane domain is discretized using two dimensional finite elements. The spatial derivatives of equations in the thickness direction are discretized in strong-form using DQM. Buckling and free vibration of rectangular thick plates of various thicknesses to width and aspect ratios with Pasternak elastic foundation are investigated using the proposed FE-DQ method. The results obtained by the mixed method have been verified by the few analytical solutions in the literature. It is concluded that the mixed FE-DQ method has good convergancy behavior; and acceptable accuracy can be obtained by the method with a reasonable degrees of freedom.  相似文献   

8.
Microtubules (MTs) are a central part of the cytoskeleton in eukaryotic cells. The dynamic behaviors of MTs are of great interest in biomechanics. Many researchers have studied the vibration analysis of MTs by modeling them as an orthotropic cylindrical elastic shell and the exact solution to its displacements is investigated under simply supported boundary conditions. Other boundary conditions lead to some coupled equations, which there are no exact solution to them. Considering various boundary conditions requires implementing semi-analytic or numerical methods. In this study, the differential quadrature method (DQM) has been used to solve the nonlinear problem of seeking fundamental frequency. At first to verify the DQM results, this method has been applied to the equations of MTs under simply supported boundary condition. The coincidence of the exact solution results and the results of DQM shows the effectiveness and precision of this method. After verification, DQM has been used for the other boundary conditions. These boundary conditions are including clamped–clamped (CC), clamped–simply (CS), clamped–free (CF) and free–free (FF) constraints. Finally, the effect of edges boundary condition, radius of MTs and half wave numbers on the vibration behavior of MTs is considered.  相似文献   

9.
In mathematical physics, the space-fractional diffusion equations are of particular interest in the studies of physical phenomena modelled by Lévy processes, which are sometimes called super-diffusion equations. In this article, we develop the differential quadrature (DQ) methods for solving the 2D space-fractional diffusion equations on irregular domains. The methods in presence reduce the original equation into a set of ordinary differential equations (ODEs) by introducing valid DQ formulations to fractional directional derivatives based on the functional values at scattered nodal points on problem domain. The required weighted coefficients are calculated by using radial basis functions (RBFs) as trial functions, and the resultant ODEs are discretized by the Crank-Nicolson scheme. The main advantages of our methods lie in their flexibility and applicability to arbitrary domains. A series of illustrated examples are finally provided to support these points.  相似文献   

10.
To improve the efficiency in predicting the dynamic mode and static response of the two-layer partial interaction composite beams, this paper utilizes the differential quadrature technique to approximate derivatives of the primary unknowns with adaptive order of precision, rather than the low and constant order of interpolation used in the conventional finite element method (FEM). A degree-of-freedom-adaptive weak-form quadrature element (WQE) for dynamic analysis is formulated and implemented based on the principle of virtual work. For the purpose of comparison, a parabolic displacement-based finite element is also provided, thus (1) the predicted deflections and natural frequencies of the composite beams are verified; (2) the smoothness of the internal forces and stresses generated by WQE method and FEM are compared, and (3) the convergent rates of higher order free vibration modes are also examined. Numerical results show that the efficiency of the proposed WQE method has, on the one hand, significantly triumphed over that of FEM on analyses including static response, natural frequencies and higher order free vibration modes, on the other hand, the smoothness of results, including internal forces and stresses, is greatly refined.  相似文献   

11.
This study investigates the small scale effect on the flapwise bending vibrations of a rotating nanoplate. The nanoplate is modeled with a classical plate theory and considering cantilever and propped cantilever boundary conditions. Due to the rotation, the axial forces are included in the model as true spatial variation. Hamilton's principle is used to derive the governing equation and boundary conditions of the classical plate theory based on Eringen's nonlocal elasticity theory. The generalized differential quadrature method is employed to solve the governing equation. The effect of small-scale parameter, non-dimensional angular velocity, non-dimensional hub radius, aspect ratio, and different boundary conditions in the first four non-dimensional frequencies is discussed. Due to considering rotating effects, results of this study are applicable in nano-machines such as nano-motors and nano-turbines and other nanostructures.  相似文献   

12.
This article shows that the weighting coefficient matrices of the differential quadrature method (DQM) are centrosymmetric or skew-centrosymmetric, if the grid spacings are symmetric irrespective of whether they are equal or unequal. A new skew centrosymmetric matrix is also discussed. The application of the properties of centrosymmetric and skew centrosymmetric matrices can reduce the computational effort of the DQM for calculations of the inverse, determinant, eigenvectors, and eigenvalues by 75%. This computational advantage is also demonstrated via several numerical examples. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
A rapid, convergent and accurate differential quadrature method (DQM) is employed for numerical simulation of unsteady open channel flow. To the best of authors’ knowledge, this is the first attempt to use the DQM in open channel hydraulics. The Saint-Venant equations and the related nonhomogenous, time dependent boundary conditions are discretized in spatial and temporal domain by DQ rules. The unknowns in the entire domain are computed by satisfying governing equations, boundary and initial conditions simultaneously. By employing DQM, accurate results can be obtained using dramatically less grid points in spatial and time domain. The stability of DQM solution is not sensitive to choosing time step or Courant number unlike other methods. Although numerical problems such as instability, oscillation and underestimation near critical depth can be seen by using other methods but DQM solution is smooth and accurate in this case. The results are sensitive to grid distribution in time domain. In light of this, Chebyshev–Gauss–Lobatto distribution performance is excellent. To validate the DQM solutions, the obtained results are compared with those of the characteristic method. In conclusion, DQM is a potential powerful method with minimum computational effort for unsteady flow simulation.  相似文献   

14.
Based on the principle of minimum potential energy and the differential quadrature rule, novel weak form quadrature element method is proposed. Different from the existing ones, expanded Chebyshev grid points are used as the element nodes. A simple but general way is proposed to compute the strains at the integration points explicitly by using the differential quadrature rule. For illustration and verification, quadrature bar and beam elements are established. Several examples are given. Numerical results indicate that the proposed quadrature element method allows a longer time step as compared to elements with other nodes and is an accurate and efficient method for structural analysis.  相似文献   

15.
An accurate free vibration analysis of skew plates is presented by using the new version of the differential quadrature method (DQM). Eight combinations of simply supported (S), clamped (C) and free (F) boundary conditions are considered. Detailed solution procedures are given and key points for success by using the DQM are emphasized. A way to simplifying the programming in using the DQM is proposed. Convergence study is made for the simply supported skew plate with a large skew angle. Good convergence of frequencies is observed. The DQ results agree very well with the existing first known accurate upper bound solutions, obtained by using Ritz method taking into considerations of the bending stress singularities occurred at corners having obtuse angles. Since slight discrepancy between the DQ data and the known accurate solutions is observed for plates with large skew angles, the DQ results are also compared with data obtained by using finite element method with very fine meshes to verify their accuracy.  相似文献   

16.
A weak form quadrature element method is proposed and applied to analysis of plane elasticity problems. A variational formulation of plane elasticity problems is established and the differential quadrature analog of the derivatives in the functional is introduced. Several typical plane elasticity problems are studied to verify the proposed method. Results show that the method is highly efficient and promising. It is applied to the analysis of nearly incompressible materials and shown to be robust against volumetric locking. Similarities and dissimilarities, advantages and disadvantages as compared with other numerical methods, typically the p-version finite element method are discussed.  相似文献   

17.
A localized triangular differential quadrature method is introduced in this article. Not only is the existing limitation on the approximation order in the triangular differential quadrature eliminated but also the convergent rate is enhanced in the new method. As an example to validate the new method, elastic torsion of prismatic shaft with regular polygonal cross section is studied and excellent agreement with available theoretical and analytic solutions is reached. It is believed that the present work further widens the applicability of the triangular differential quadrature technique. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 682–692, 2003  相似文献   

18.
As a first endeavor, a mixed differential quadrature (DQ) and finite element (FE) method for boundary value structural problems in the context of free vibration and buckling analysis of thick beams supported on two-parameter elastic foundations is presented. The formulations are based on the two-dimensional theory of elasticity. The problem domain along axial direction is discretized using finite elements. The resulting system of equations and the related boundary conditions are discretized in the thickness direction and in strong-form using DQM. The method benefits from low computational efforts of the DQ in conjunction with the effectiveness of the FE method in general geometry and systematic boundary treatment resulting in highly accurate and fast convergence behavior solution. The boundary conditions at the top and bottom surface of the beams are implemented accurately. The presented formulations provide an effective analysis tool for beams free of shear locking. Comparisons are made with results from elasticity solutions as well as higher-order beam theory.  相似文献   

19.
In this article, we develop a direct solution technique for solving multi-order fractional differential equations (FDEs) with variable coefficients using a quadrature shifted Legendre tau (Q-SLT) method. The spatial approximation is based on shifted Legendre polynomials. A new formula expressing explicitly any fractional-order derivatives of shifted Legendre polynomials of any degree in terms of shifted Legendre polynomials themselves is proved. Extension of the tau method for FDEs with variable coefficients is treated using the shifted Legendre–Gauss–Lobatto quadrature. Numerical results are given to confirm the reliability of the proposed method for some FDEs with variable coefficients.  相似文献   

20.
The differential quadrature (DQ) is generalized. Various methods for generating the weighting coefficients are developed. The design of a grid model is flexible. Weighting coefficients for general multi-coordinate grid models with arbitrary configurations can also be calculated. The calculation of weighting coefficients is easy. Sample numerical procedures for constructing one-coordinate, two-coordinate and arbitrary finite-coordinate generic differential quadrature models are presented. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号