首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of the naturally occurring sulfite‐bearing minerals scotlandite, hannebachite and orschallite have been studied by Raman spectroscopy. Raman bands are observed for scotlandite PbSO3 at 935, 880, 622 and 474 cm−1 and are assigned to the (SO3)2−ν1(A1), ν3(E), ν2(A1) and ν4(E) vibrational modes, respectively. For hannebachite (CaSO3)2·H2O these bands are observed at 1005, 969 and 655 cm−1 with multiple bands for the ν4(E) mode at 444, 492 and 520 cm−1. The Raman spectrum of hannebachite is very different from that of the compound CaSO3·2H2O. It is proposed, on the basis of Raman spectroscopy, that in the mineral hannebachite, the sulfite anion bonds to Ca through the sulfur atom. The Raman spectrum of the mineral orschallite Ca3[SO4](SO3)2·12H2O is complex resulting from the overlap of sulfate and sulfite bands. Raman bands at 1005 cm−1, 1096 and 1215 cm−1 are assigned to the (SO4)2−ν1 symmetric and ν3 asymmetric stretching modes. The two Raman bands at 971 and 984 cm−1 are attributed to the (SO3)2−ν3(E) and ν1(A1) stretching vibrations. The formation of sulfite compounds in nature offers a potential mechanism for the removal of sulfates and sulfites from soils. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Raman spectroscopy has been used to characterise four natural halotrichites: halotrichite FeSO4.Al2(SO4)3. 22H2O, apjohnite MnSO4.Al2(SO4)3.22H2O, pickingerite MgSO4.Al2(SO4)3.22H2O and wupatkiite CoSO4.Al2(SO4)3.22H2O. A comparison of the Raman spectra is made with the spectra of the equivalent synthetic pseudo‐alums. Energy dispersive X‐ray analysis (EDX) was used to determine the exact composition of the minerals. The Raman spectrum of apjohnite and halotrichite display intense symmetric bands at ∼985 cm−1 assigned to the ν1(SO4)2− symmetric stretching mode. For pickingerite and wupatkiite, an intense band at ∼995 cm−1 is observed. A second band is observed for these minerals at 976 cm−1 attributed to a water librational mode The series of bands for apjohnite at 1104, 1078 and 1054 cm−1, for halotrichite at 1106, 1072 and 1049 cm−1, for pickingerite at 1106, 1070 and 1049 cm−1 and for wupatkiite at 1106, 1075 and 1049 cm−1 are attributed to the ν3(SO4)2− antisymmetric stretching modes of ν3(Bg) SO4. Raman bands at around 474, 460 and 423 cm−1 are attributed to the ν2(Ag) SO4 mode. The band at 618 cm−1 is assigned to the ν4(Bg) SO4 mode. The splitting of the ν2, ν3 and ν4 modes is attributed to the reduction of symmetry of the SO4 and it is proposed that the sulphate coordinates to water in the hydrated aluminium in bidentate chelation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Raman spectra of 3CHBT in unoriented form were recorded at 14 different temperature measurements in the range 25–55 °C, which covers the crystal → nematic (N) phase transition, and the Raman signatures of the phase transition were identified. The wavenumber shifts and linewidth changes of Raman marker bands with varying temperature were determined. The assignments of important vibrational modes of 3CHBT were also made using the experimentally observed Raman and infrared spectra, calculated wavenumbers, and potential energy distribution. The DFT calculations using the B3LYP method employing 6‐31G functional were performed for geometry optimization and vibrational spectra of monomer and dimer of 3CHBT. The analysis of the vibrational bands, especially the variation of their peak position as a function of temperature in two different spectral regions, 1150–1275 cm−1 and 1950–2300 cm−1, is discussed in detail. Both the linewidth and peak position of the ( C H ) in‐plane bending and ν(NCS) modes, which give Raman signatures of the crystal → N phase transition, are discussed in detail. The molecular dynamics of this transition has also been discussed. We propose the co‐existence of two types of dimers, one in parallel and the other in antiparallel arrangement, while going to the nematic phase. The structure of the nematic phase in bulk has also been proposed in terms of these dimers. The red shift of the ν(NCS) band and blue shift of almost all other ring modes show increased intermolecular interaction between the aromatic rings and decreased intermolecular interaction between two  NCS groups in the nematic phase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Many minerals based upon antimonite and antimonate anions remain to be studied. Most of the bands occur in the low wavenumber region, making the use of infrared spectroscopy difficult. This problem can be overcome by using Raman spectroscopy. The Raman spectra of the mineral klebelsbergite Sb4O4(OH)2(SO4) were studied and related to the structure of the mineral. The Raman band observed at 971 cm−1 and a series of overlapping bands are observed at 1029, 1074, 1089, 1139 and 1142 cm−1 are assigned to the SO42−ν1 symmetric and ν3 antisymmetric stretching modes, respectively. Two Raman bands are observed at 662 and 723 cm−1, which are assigned to the Sb O ν3 antisymmetric and ν1 symmetric stretching modes, respectively. The intense Raman bands at 581, 604 and 611 cm−1 are assigned to the ν4 SO42− bending modes. Two overlapping bands at 481 and 489 cm−1 are assigned to the ν2 SO42− bending mode. Low‐intensity bands at 410, 435 and 446 cm−1 may be attributed to O Sb O bending modes. The Raman band at 3435 cm−1 is attributed to the O H stretching vibration of the OH units. Multiple Raman bands for both SO42− and Sb O stretching vibrations support the concept of the non‐equivalence of these units in the klebelsbergite structure. It is proposed that the two sulfate anions are distorted to different extents in the klebelsbergite structure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Uranopilite, [(UO2)6(SO4)O2(OH)6(H2O)6](H2O)8, the composition of which may vary, can be understood as a complex hydrated uranyl oxyhydroxy sulfate. The structure of uranopilite from different locations has been studied by Raman spectroscopy at 298 and 77 K. A single intense band at 1009 cm−1 assigned to the ν1 (SO4)2− symmetric stretching mode shifts to higher wavenumbers at 77 K. Three low‐intensity bands are observed at 1143, 1117 and 1097 cm−1. These bands are attributed to the (SO4)2− ν3 anti‐symmetric stretching modes. Multiple bands provide evidence that the symmetry of the sulfate anion in the uranopilite structure is lowered. Three bands are observed in the region 843 to 816 cm−1 in both the 298 and 77 K spectra and are attributed to the ν1 symmetric stretching modes of the (UO2)2+ units. Multiple bands prove the symmetry reduction of the UO2 ion. Multiple OH stretching modes prove a complex arrangement of OH groupings and hydrogen bonding in the crystal structure. A series of infrared bands not observed in the Raman spectra are found at 1559, 1540, 1526 and 1511 cm−1 attributed to δ UOH bending modes. U‐O bond lengths in uranyl and O H/dotbondO bond lengths are calculated and compared with those from X‐ray single crystal structure analysis. The Raman spectra of uranopilites of different origins show subtle differences, proving that the spectra are origin‐ and sample‐dependent. Hydrogen‐bonding network and its arrangement in the crystal structure play an important role in the origin and stability of uranopilite. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The Surface‐enhanced Raman scattering of benzenesulfonamide and sulfanilamide adsorbed on silver sols was studied. On the basis of the noticeable shifts observed for wavenumbers of the νs(OSO), ν(CS), and ν(SN) vibrations with respect to the Raman spectra of the solids and the ionic solutions, we conclude that these molecules are adsorbed on silver nanoclusters at pH ≥ 7 with the aminosulfonyl groups partially deprotonated. The benzenesulfonamide links to the metal through the nitrogen atom of the corresponding azanion, while the sulfanilamide interacts in turn through the nitrogen atoms of the –NH2 and –SO2NH groups in the para‐position. Additionally, it was found that the most enhanced surface‐enhanced Raman scattering bands, especially the 8a;νring mode, are related to the presence of the charge transfer mechanism. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The mixed anion mineral parnauite Cu9[(OH)10|SO4|(AsO4)2]·7H2O has been studied by Raman spectroscopy. Characteristic bands associated with arsenate, sulphate and hydroxyl units are identified. Broad bands are observed and are resolved into component bands. Two intense bands at 859 and 830 cm−1 are assigned to the ν1 (AsO4)3− symmetric stretching and ν3 (AsO4)3− antisymmetric stretching modes. The comparatively sharp band at 976 cm−1 is assigned to the ν1 (SO4)2− symmetric stretching mode and a broad‐spectral profile centered upon 1097 cm−1 is attributed to the ν3 (SO4)2− antisymmetric stretching mode. A comparison of the Raman spectra is made with other arsenate‐bearing minerals such as carminite, clinotyrolite, kankite, tilasite and pharmacosiderite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Raman spectroscopy was used to study the molecular structure of a series of selected rare earth (RE) silicate crystals including Y2SiO5 (YSO), Lu2SiO5 (LSO), (Lu0.5Y0.5)2SiO5 (LYSO) and their ytterbium‐doped samples. Raman spectra show resolved bands below 500 cm−1 region assigned to the modes of SiO4 and oxygen vibrations. Multiple bands indicate the nonequivalence of the RE O bonds and the lifting of the degeneracy of the RE ion vibration. Low intensity bands below 500 cm−1 are an indication of impurities. The (SiO4)4− tetrahedra are characterized by bands near 200 cm−1 which show a separation of the components of ν4 and ν2, in the 500–700 cm−1 region which are attributed to the distorting bending vibration and in the 880–1000 cm−1 region which are attributed to the symmetric and antisymmetric stretching vibrational modes. The majority of the bands in the 300–610 cm−1 region of Re2SiO5 were found to arise from vibrations involving both Si and RE ions, indicating that there is considerable mixing of Si displacements with Si O bending modes and RE O stretching modes. The Raman spectra of RE silicate crystals were analyzed in terms of the molecular structure of the crystals, which enabled separation of the bands attributed to distinct vibrational units. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, a combined theoretical and experimental study of binary mixture of liquid p‐methylbenzaldehyde (PMBz) is reported using ab initio calculations as well as Raman and IR spectroscopies. The purpose of this study was twofold: firstly, to describe the interaction of PMBz in terms of bonding energies and preferred geometries; and secondly, to characterize the spectroscopic effects on the vibrational modes of PMBz in the binary mixture of different polar and nonpolar solvents. The three vibrational modes, namely, carbonyl stretching, ν(C CH3) and aldehydic (C H) vibrations have been analyzed in all the three solvents in different concentrations. The dependence of Raman linewidth on the concentration of PMBz of these modes was also taken into account. By analyzing the peak position and linewidth of these modes, it is seen that the solute–solvent interaction is stronger in BuOH and 1,2 dichloroethane (DCE) because of the hydrogen‐bonding interaction between these molecules. The formation of C H···O hydrogen bonds in liquid p‐methylbenzaldehyde is also investigated by Gaussian fitting. The ab initio calculations suggest several possible dimer configurations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The B‐band resonance Raman spectra of 2(1H)‐pyridinone (NHP) in water and acetonitrile were obtained, and their intensity patterns were found to be significantly different. To explore the underlying excited state tautomeric reaction mechanisms of NHP in water and acetonitrile, the vibrational analysis was carried out for NHP, 2(1D)‐pyridinone (NDP), NHP–(H2O)n (n = 1, 2) clusters, and NDP–(D2O)n (n = 1, 2) clusters on the basis of the FT‐Raman experiments, the B3LYP/6‐311++G(d,p) computations using PCM solvent model, and the normal mode analysis. Good agreements between experimental and theoretically predicted frequencies and intensities in different surrounding environments enabled reliable assignments of Raman bands in both the FT‐Raman and the resonance Raman spectra. The results indicated that most of the B‐band resonance Raman spectra in H2O was assignable to the fundamental, overtones, and combination bands of about ten vibration modes of ring‐type NHP–(H2O)2 cluster, while most of the B‐band resonance Raman spectra in CH3CN was assigned to the fundamental, overtones, and combination bands of about eight vibration modes of linear‐type NHP–CH3CN. The solvent effect of the excited state enol‐keto tautomeric reaction mechanisms was explored on the basis of the significant difference in the short‐time structural dynamics of NHP in H2O and CH3CN. The inter‐molecular and intra‐molecular ESPT reaction mechanisms were proposed respectively to explain the Franck–Condon region structural dynamics of NHP in H2O and CH3CN.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The mixed anion mineral chalcophyllite Cu18Al2(AsO4)4(SO4)3(OH)24·36H2O has been studied by using Raman and infrared spectroscopies. Characteristic bands associated with arsenate, sulfate and hydroxyl units are identified. Broad bands in the OH stretching region are observed and are resolved into component bands. Estimates of hydrogen bond distances were made using a Libowitzky function. Both short and long hydrogen bonds were identified. Two intense bands at 841 and ∼814 cm−1 are assigned to the ν1 (AsO4)3− symmetric stretching and ν3 (AsO4)3− antisymmetric stretching modes. The comparatively sharp band at 980 cm−1 is assigned to the ν1 (SO4)2− symmetric stretching mode, and a broad spectral profile centred upon 1100 cm−1 is attributed to the ν3 (SO4)2− antisymmetric stretching mode. A comparison of the Raman spectra is made with other arsenate‐bearing minerals such as carminite, clinotyrolite, kankite, tilasite and pharmacosiderite. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Histidine is an important and versatile amino acid residue that plays a variety of structural and functional roles in proteins. Although the Raman bands of histidine are generally weak, histidine in the N‐deuterated cationic form with imidazole Nπ D and Nτ D bonds (N‐deuterated histidinium) gives two strong Raman bands assignable to the C4C5 stretch (νCC) and the Nπ C2 Nτ symmetric stretch (νNCN) of the imidazole ring. We examined the Raman spectra of N‐deuterated histidinium in 12 crystals with known structures. The observed νCC and νNCN wavenumbers were analyzed to find empirical correlations with the conformation and hydrogen bonding. The effect of conformation on the vibrational wavenumber was expressed as a threefold cosine function of the Cα Cβ C4C5 torsional angle. The effect of hydrogen bonding at Nπ or Nτ was assumed to be proportional to the inverse sixth power of the distance between the hydrogen and acceptor atoms. Multiple linear regression analysis clearly shows that the conformational effect on the vibrational wavenumber is comparable for νCC and νNCN. The hydrogen bond at Nπ weakly lowers the νCC wavenumber and substantially raises the νNCN wavenumber. On the other hand, the hydrogen bond at Nτ strongly raises the νCC wavenumber but does not affect the νNCN wavenumber. These empirical correlations may be useful in Raman spectral analysis of the conformation and hydrogen bonding states of histidine residues in proteins. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Fourier‐transform infrared (FT‐IR), Raman (RS), and surface‐enhanced Raman scattering (SERS) spectra of β‐hydroxy‐β‐methylobutanoic acid (HMB), L ‐carnitine, and N‐methylglycocyamine (creatine) have been measured. The SERS spectra have been taken from species adsorbed on a colloidal silver surface. The respective FT‐IR and RS band assignments (solid‐state samples) based on the literature data have been proposed. The strongest absorptions in the FT‐IR spectrum of creatine are observed at 1398, 1615, and 1699 cm−1, which are due to νs(COOH) + ν(CN) + δ(CN), ρs(NH2), and ν(C O) modes, respectively, whereas those of L ‐carnitine (at 1396/1586 cm−1 and 1480 cm−1) and HMB (at 1405/1555/1585 cm−1 and 1437–1473 cm−1) are associated with carboxyl and methyl/methylene group vibrations, respectively. On the other hand, the strongest bands in the RS spectrum of HMB observed at 748/1442/1462 cm−1 and 1408 cm−1 are due to methyl/methylene deformations and carboxyl group vibrations, respectively. The strongest Raman band of creatine at 831 cm−1w(R NH2)) is accompanied by two weaker bands at 1054 and 1397 cm−1 due to ν(CN) + ν(R NH2) and νs(COOH) + ν(CN) + δ(CN) modes, respectively. In the case of L ‐carnitine, its RS spectrum is dominated by bands at 772 and 1461 cm−1 assigned to ρr(CH2) and δ(CH3), respectively. The analysis of the SERS spectra shows that HMB interacts with the silver surface mainly through the  COO, hydroxyl, and  CH2 groups, whereas L ‐carnitine binds to the surface via  COO and  N+(CH3)3 which is rarely enhanced at pH = 8.3. On the other hand, it seems that creatine binds weakly to the silver surface mainly by  NH2, and C O from the  COO group. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The solvation structure of magnesium, zinc(II), and alkaline earth metal ions in N,N‐dimethylformamide (DMF) and N,N‐dimethylacetamide (DMA), and their mixtures has been studied by means of Raman spectroscopy and DFT calculations. The solvation number is revealed to be 6, 7, 8, and 8 for Mg2+, Ca2+, Sr2+, and Ba2+, respectively, in both DMF and DMA. The δ (O C N) vibration of DMF shifts to a higher wavenumber upon binding to the metal ions and the shift Δν(= νbound − νfree) becomes larger, when the ionic radius of the metal ion becomes smaller. The ν (N CH3) vibration of DMA also shifts to a higher wavenumber upon binding to the metal ions. However, the shift Δν saturates for small ions, as well as the transition‐metal (II) ions, implying that steric congestion among solvent molecules takes place in the coordination sphere. It is also indicated that, despite the magnesium ion having practically the same ionic radius as the zinc(II) ion of six‐coordination, their solvation numbers in DMA are significantly different. DFT calculations for these metalsolvate clusters of varying solvation numbers revealed that not only solvent–solvent interaction through space but also the bonding nature of the metal ion plays an essential role in the steric congestion. The individual solvation number and the Raman shift Δν in DMF–DMA mixtures indicate that steric congestion is significant for the magnesium ion, but not appreciable for calcium, strontium, and barium ions, despite the solvation number of these metal ions being large. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The dideprotonation of 4‐(4‐nitrophenylazo)resorcinol generates an anionic species with substantial electronic π delocalization. As compared to the parent neutral species, the anionic first excited electronic transition, characterized as an intramolecular charge transfer (ICT) from the CO groups to the NO2 moiety, shows a drastic red shift of ca. 200 nm in the λmax in the UV‐vis spectrum, leading to one of the lowest ICT energies observed (λmax = 630 nm in dimethyl sulfoxide (DMSO)) in this class of push‐pull molecular systems. Concomitantly, a threefold increase in the molar absorptivity (εmax) in comparison to the neutral species is observed. The resonance Raman enhancement profiles reveal that in the neutral species the chromophore involves several modes, as ν(C N), ν(NN), ν(CC) and νs(NO2), whereas in the dianion, there is a selective enhancement of the NO2 vibrational modes. The quantum chemical calculations of the electronic transitions and vibrational wavenumbers led to a consistent analysis of the enhancement patterns observed in the resonance Raman spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A comparative analysis has been carried out on the Raman spectra of FeSO4·nH2O (n = 1, 4, 7) including the 2D‐analogs. The effects of changing the degrees of hydration have been found from the lattice, SO42− internal, and H2O internal modes. Increasing degrees of hydration shift the intense ν1(SO4) peak to lower wavenumbers and reduce the amount of splitting on the ν3(SO4) peaks. Some of the water librational bands cause the broadening of the ν4(SO4) peaks in FeSO4·7H2O and the ν2(SO4) peaks in FeSO4·7D2O. The ν2(H2O) band in FeSO4·H2O is red‐shifted in excess of 100 cm−1 relative to the unperturbed H2O band. Between 240 and 190 K and between 140 and 90 K in the spectra of FeSO4.4H2O, two potential phase transitions have been identified from the changes in the lattice and water‐stretching regions. The resolution of the ν1(H2O) and ν3(H2O) bands in FeSO4·4H2O and FeSO4·H2O also improved sharply at low temperatures. The capability of distinguishing various forms of FeSO4 hydrates unambiguously makes the Raman technique a potential analytical tool for the identification of sulfate minerals on planetary surfaces. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The study reports the observation of radial vibrational modes in ultra‐thin walled anatase TiO2 nanotube powders grown by rapid breakdown anodization technique using resonant Raman spectroscopic study. The as‐grown tubes in the anatase phase are around 2–5 nm in wall thickness, 15–18 nm in diameter and few microns in length. The Eg(ν1,ν5,ν6) phonon modes with molecular vibrations in the radial direction are predominant in the resonance Raman spectroscopy using 325 nm He–Cd excitation. Multi‐phonons including overtones and combinational modes of Eg(ν1,ν5,ν6) are abundantly observed. Fröhlich interaction owing to electron–phonon coupling in the resonance Raman spectroscopy of ultra‐thin wall nanotubes is responsible for the observation of radial vibrational modes. Finite size with large surface energy in these nanotubes energetically favor only one mode, B1g(ν4) with unidirectional molecular vibrations in the parallel configuration out of the three Raman modes with molecular vibration normal to the radial modes. Enhanced specific heat with increasing temperatures in these nanotubes as compared to that reported for nanoparticles of similar diameter may possibly be related to the presence of the prominent radial mode along with other energetic phonon mode. The findings elucidate the understanding of total energy landscape for TiO2 nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
ABSTRACT

Papagoite is a silicate mineral named after an American Indian tribe and was used as a healing mineral. Papagoite CaCuAlSi2O6(OH)3 is a hydroxy mixed anion compound with both silicate and hydroxyl anions in the formula. The structural characterization of the mineral papagoite remains incomplete. Papagoite is a four-membered ring silicate with Cu2+ in square planar coordination.

The intense sharp Raman band at 1053 cm?1 is assigned to the ν1 (A 1g) symmetric stretching vibration of the SiO4 units. The splitting of the ν3 vibrational mode offers support to the concept that the SiO4 tetrahedron in papagoite is strongly distorted. A very intense Raman band observed at 630 cm?1 with a shoulder at 644 cm?1 is assigned to the ν4 vibrational modes.

Intense Raman bands at 419 and 460 cm?1 are attributed to the ν2 bending modes.

Intense Raman bands at 3545 and 3573 cm?1 are assigned to the stretching vibrations of the OH units. Low-intensity Raman bands at 3368 and 3453 cm?1 are assigned to water stretching modes. It is suggested that the formula of papagoite is more likely to be CaCuAlSi2O6(OH)3 · xH2O. Hence, vibrational spectroscopy has been used to characterize the molecular structure of papagoite.  相似文献   

20.
Nitriles introduced into peptides and proteins can serve as useful vibrational spectroscopic probes, because the nitrile C ≡ N stretch is well isolated from backbone and sidechain vibrational bands. Aromatic nitriles offer large νC ≡ N absorption intensity in infrared spectra and resonance enhancement in Raman spectra with ultraviolet excitation. We report the ultraviolet resonance Raman spectra of cyanophenylalanine attached to cysteine, through linkage reactions that are applicable to cysteine residues in proteins. Excitation profiles are reported, and the νC ≡ N detection limit is estimated to be 5 µ m . The band position is sensitive to solvent polarity and especially to strong H‐bonding. The derivatization of mastoparan X peptide at introduced cysteine residues demonstrated the effectiveness of a cyanophenylcysteine probe in reporting the lowered environmental polarity when the peptide was incorporated into liposomes. For an asymmetrical cyanophenyl derivative, 2‐CBCys, the intensity ratio of asymmetric and symmetric ring modes, ν8b and ν8a, was found to respond to solvent polarity and not to H‐bonding. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号