首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrational spectral analysis was carried out for 4‐methoxy‐2‐methyl benzoic acid (4M2MBA) by using Fourier transform infrared (FT‐IR) (solid, gas phase) and FT‐Raman spectroscopy in the range of 400–4000 and 10–3500 cm−1 respectively. The effects of molecular association through O H···O hydrogen bonding have been described by the single dimer structure. The theoretical computational density functional theory (DFT) and Hatree‐Fock (HF) method were performed at 6–311++G(d,p) levels to derive the equilibrium geometry, vibrational wavenumbers, infrared intensities and Raman scattering activities. The scaled theoretical wavenumbers were also shown to be in good agreement with experimental data. The first‐order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of 4M2MBA are calculated using the B3LYP/cc‐pvdz basis set, based on the finite‐field approach. A detailed interpretation of the infrared and Raman spectra of 4M2MBA is reported. The theoretical spectrograms for FT‐IR and FT‐Raman spectra of the title molecule were also constructed and compared with the experimental one. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, the Fourier‐transform infrared (FT‐IR) and FT‐Raman spectra of 3,5‐dichlorophenylboronicacid (3,5‐dcpba) were recorded in the solid phase. The structural and spectroscopic analysis of the 3,5‐dichlorophenylboronic was made by using density functional harmonic calculations. There are three conformers for this molecule. The computational results diagnose the most stable conformer of 3,5‐dcpba as the ct form. The geometrical parameters and energies have been obtained for all three conformers from DFT (B3LYP) with 6‐311+ + G(d,p) basis set calculations. The vibrations of stable and unstable conformers of 3,5‐dcpba are researched by using quantum chemical calculations. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes calculated with the scaled quantum mechanics (SQM) method. The stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using the natural bond orbital (NBO) analysis. The results show that the charge in electron density (ED) in the π* and σ* antibonding orbitals and E2 energies confirms the occurrence of ıntermolecular charge transfer (ICT) within the molecule. Finally, the calculation results were applied to simulated infrared and Raman spectra of the title compound, which show agreement with the observed spectra. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
We have studied 2‐(2‐benzofuranyl)‐2‐imidazoline (BFI) and characterized it by using infrared and Raman spectroscopies. The density functional theory (DFT) method together with Pople's basis set shows that two conformers exist for the title molecule as have been theoretically determined in the gas phase and that, probably, an average of both conformations is present in the solid phase. The harmonic vibrational wavenumbers for the optimized geometry of the latter conformer were calculated at the B3LYP/6‐31G* level in the proximity of the isolated molecule. For a complete assignment of the IR and Raman spectra in the compound in the solid phase, DFT calculations were combined with Pulay's scaled quantum mechanics force field (SQMFF) methodology in order to fit the theoretical wavenumbers to the experimental ones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐fluoro‐N‐(2‐hydroxy‐4‐nitrophenyl)benzamide were recorded and analyzed. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red‐shift of the NH‐stretching wavenumber in the infrared (IR) spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO‐stretching mode gives the charge transfer interaction through a π‐conjugated path. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐ethyl‐N‐(2′‐hydroxy‐5′‐nitrophenyl)benzamide were recorded and analyzed. A surface‐enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared spectrum from the computational wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO stretching mode gives the charge transfer interaction through a π‐conjugated path. The presence of methyl modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface, which affects the orientation and metal molecule interaction. The first hyperpolarizability and predicted infrared intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive subject for future studies of nonlinear optics. Optimized geometrical parameters of the title compound are in agreement with reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
FTIR and FT Raman spectra of 2‐bromo‐4‐chloro phenol (BCP) and 2‐chloro‐4‐nitro phenol (CNP) were recorded in the region 4000–400 and 4000–50 cm−1, respectively. The molecular structure, geometry optimization, and vibrational wavenumbers were investigated. The spectra were interpreted with the aid of normal coordinate analysis based on density functional theory (DFT) using the standard B3LYP/6‐31G** method and basis set combination and was scaled using multiple scale factors, which yield good agreement between the observed and calculated wavenumbers. The results of the calculations are applied to simulate the infrared and Raman spectra of the title compounds, which showed excellent agreement with the observed spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, the Fourier transform infrared and Raman spectra of 2‐bromonicotinic acid and 6‐bromonicotinic acid (abbreviated as 2‐BrNA and 6‐BrNA, C6H4BrNO2) have been recorded in the region 4000–400 and 3500–50 cm−1. The optimum molecular geometry, normal mode wavenumbers, infrared intensities and Raman scattering activities, corresponding vibrational assignments and intermolecular hydrogen bonds were investigated with the help of B3LYP density functional theory (DFT) method using 6‐311++G(d,p) basis set. Reliable vibrational assignments were made on the basis of total energy distribution (TED) calculated with scaled quantum mechanical (SQM) method. From the calculations, the molecules are predicted to exist predominantly as the C1 conformer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
This work deals with the vibrational spectroscopy of 2‐amino‐4,6‐dihydroxy pyrimidine (ADHP) by means of quantum chemical calculations. The mid‐ and far FTIR and FT‐Raman spectra were measured in the condensed state. The fundamental vibrational wavenumbers and intensity of vibrational bands were evaluated using density functional theory (DFT) with the standard B3LYP/6‐311 + G** methods and basis set combinations, and were scaled using various scale factors, which yielded good agreement between the observed and calculated wavenumbers. The vibrational spectra were interpreted with the aid of normal coordinate analysis based on the scaled density functional force field. The results of the calculations were applied to simulate the infrared and Raman spectra of the title compound, which showed excellent agreement with the observed spectra. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The N‐(2′‐furyl)‐imidazole ( 1 ) has been prepared and characterized using infrared, Raman and multidimensional nuclear magnetic resonance spectroscopies. Theoretical calculations have been carried out by employing the Density Functional Theory (DFT) method, in order to optimize the geometry of their two conformers in the gas phase and to support the assignments of the vibrational bands of 1 to their normal modes. For a complete assignment of the compound, DFT calculations were combined with Scaled Quamtum Mecanic Force Field (SQMFF) methodology in order to fit the theoretical wavenumber values to the experimental one. Furthermore, Natural Bond Orbital (NBO) and topological properties by Atoms In Molecules (AIM) calculations were performed to analyze the nature and magnitude of the intramolecular interactions. The result reveals that two conformers are expected in liquid phase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Quantum chemical calculations of energies, geometries and vibrational wavenumbers of 2,4‐difluorophenol (2,4‐DFP) were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6‐311G(d,p) as basis set. The optimized geometrical parameters obtained by HF and DFT calculations are in good agreement with related molecules. The best level of theory in order to reproduce the experimental wavenumbers is the B3LYP method with the 6‐311G(d,p) basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of 2,4‐DFP is also reported. The entropy of the title compound was also performed at HF/6‐311G(d,p) and B3LYP/6‐311G(d,p) levels of theory. The isotropic chemical shift computed by 1H, 13C NMR analyses also shows good agreement with experimental observations. The theoretical spectrograms for FT‐IR and FT‐Raman spectra of the title molecule have been constructed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The Fourier transform infrared (4000–400 cm−1) and Fourier transform Raman (3500–500 cm−1) spectra of 4‐hydroxy‐3‐(3‐oxo‐1‐phenylbutyl)‐2H‐1‐benzopyran‐2‐one (Warfarin) have been measured and calculated. The structure optimization has been made using density functional theory (DFT) calculations. Complete vibrational assignments of the observed spectra have been compared with theoretical wavenumbers. The wavenumber increasing in the methyl group shows the electronic hyperconjugation effect. The natural bond orbital (NBO) analysis reveals the hyperconjugation interaction and the intramolecular hydrogen bonding. The first‐order hyperpolarizability has been calculated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The experimental and theoretical vibrational spectra of 2‐fluorophenylboronic acid (2fpba) were studied. The Fourier transform Raman and Fourier transform infrared spectra of the 2fpba molecule were recorded in the solid phase. The structural and spectroscopic analysis of the molecule was carried out by using Hartree‐Fock and density functional harmonic calculations. For the title molecule, only one form was found to be the most stable structure, by using B3LYP level with the 6‐31++G(d,p) basis set. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution (TED). The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the 2fpba molecule were calculated using the Gauge‐Invariant‐ atomic orbital (GIAO) method in DMSO solution using IEF‐PCM model and compared with the experimental data. Finally, geometric parameters, vibrational wavenumbers and chemical shifts were compared with available experimental data of the molecule. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
In this study 2‐(2′‐furyl)‐4,5‐1H‐dihydroimidazole (1) was prepared and then characterized by infrared, Raman, and multidimensional nuclear magnetic resonance (NMR) spectroscopies. The crystal and molecular structures of 1 were determined by X‐ray diffraction methods. The density functional theory (DFT) and second‐order Møller–Plesset theory (MP2) with Pople's basis set show that there are two conformers for the title molecule that have been theoretically determined in the gas phase, and that only one of them, conformer I, is present in the solid phase. NMR spectra observed for 1 were successfully compared with the calculated chemical shifts at the B3LYP/6‐311++G** level theorized for this conformer. The harmonic vibrational frequencies for the optimized geometry of the latter conformer were calculated at the B3LYP/6‐311++G** level in the approximation of the isolated molecule. For a complete assignment of the IR and Raman spectra in the solid phase of 1 , DFT calculations were combined with Pulay´s scaled quantum mechanics force field (SQMFF) methodology to fit the theoretical frequency values to the experimental ones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The solid phase mid‐FTIR and FT‐Raman spectra of 1‐hydroxy naphthalene (HNP) were recorded in the regions 4000–400 and 4000–50 cm, respectively. The spectra were interpreted with the help of normal coordinate analysis following full structure optimization and force field calculations based on the density functional theory (DFT) using the standard B3LYP/6‐31G** method and basis set combination. The results of the calculations were applied to simulate infrared and Raman spectra of the title compound which showed excellent agreement with the observed spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
IR and Raman spectra (RS) of polycrystalline 3‐(or 4 or 6)‐methyl‐5‐nitro‐2‐pyridinethione have been measured and analyzed by means of density functional theory (DFT) quantum chemical calculations. The B3LYP/6‐311G(2d,2p) approach has been applied for both the thiol and thione tautomers due to the possibility of the formation of these two thiole forms. Molecular structures of these compounds have been optimized starting from different molecular geometries of the thiol group and thione group. Two conformations of the 2‐mercaptopyridine, trans and cis, have been taken into account. It was shown that the studied compounds appear in the solid state in the thione form. The effect of the hydrogen‐bond formation in the studied compounds has been considered. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
In this work, the experimental and theoretical vibrational spectra of N1‐methyl‐2‐chloroaniline (C7H8NCl) were studied. FT‐IR and FT‐Raman spectra of the title molecule in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with the 6‐311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT‐IR and FT‐Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H NMR chemical shifts results were compared with the experimental values. The optimized geometric parameters (bond lengths and bond angles) were given and are in agreement with the corresponding experimental values of aniline and p‐methyl aniline. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A new organic–organic salt, 2‐aminopyridinium‐4‐hydroxybenzenosulfonate, has been synthesised and characterised by means of FT‐IR and FT‐Raman spectroscopies, differential scanning calorimetry (DSC) and single crystal X‐ray crystallography. Its vibrational spectra have been discussed on the basis of quantum chemical density functional theory (DFT) calculations using the B3LYP/6‐31G(d,p) approach. The role of the intermolecular interactions in this crystal is analysed. The N HċċċO interactions between the hydrogen atoms of the pyridinium cation and oxygen atoms of hydroxybenzenosulfonate anion built the supramolecular arrangement in three‐dimensional space. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
X‐ray diffraction (XRD) studies have shown that 2‐piperidyl‐5‐nitro‐6‐methylpyridine, C11H15N3O2, undergoes a structural phase transition at T = 240 K. The room temperature structure is tetragonal, space group I41/a, with the unit‐cell dimensions a = 13.993(2) and c = 23.585(5) Å. The pyridine ring takes trans conformation with respect to the piperidine unit. While pyridine is well ordered, the piperidine moiety shows apparent disorder resulting from a libration about the linking N C bond. The low‐temperature phase is monoclinic, space group I2/a. Contraction of the unit‐cell volume by 2.3% at 170 K enables the C H···O linkage between the molecules of the neighbouring stacks. As result, the asymmetric unit becomes bi‐molecular. The thermal librations of the piperidine and methyl groups become considerably reduced at 170 K and nearly fully reduced at about 100 K. The IR spectra and polarised Raman spectra agree with the X‐ray structure and confirm the disorder effect on the piperidine ring. The assignment of the bands observed was made on the basis of DFT chemical quantum calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
FT‐IR and FT‐Raman spectra of benzoic acid (BA) and 3,5‐dichloro salicylic acid (SA) have been recorded in the regions of 4000–400 and 4000–50 cm−1 respectively. The spectra were interpreted with the aid of normal coordinate analysis following the full structure optimizations and force field calculations based on density functional theory (DFT) using standard B3LYP6‐31G** method and basis set combinations. The DFT force field transformed to natural internal coordinates was corrected by a well‐established set of scale factors that were found to be transferable to the title compounds. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The complexes of cerium(III) and neodymium(III) were synthesized by reaction of the respective inorganic salts with 5‐aminoorotic acid (H4L) in amounts equal to the metal:ligand molar ratio of 1:3. The structures of the final complexes were determined by means of spectral (IR, Raman, 1H NMR and 13C NMR) and elemental analysis. Significant differences in the IR spectra of the complexes were observed as compared to the spectrum of the ligand. A comparative analysis of the Raman spectra of the complexes with that of the free H4L allowed a straightforward assignment of the vibrations of the ligand groups involved in coordination. The geometry of H4L was computed and optimized for the first time with the Gaussian03 program using the B3PW91/6‐311++G**, B3PW91/LANL2DZ, B3LYP/6‐311++G** and B3LYP/LANL2DZ methods. The experimental IR and Raman bands of the ligand were assigned to normal modes on the basis of DFT calculations. The vibrational analysis performed for the studied species, H4L and its complexes, helped to explain the vibrational behavior of the ligand vibrational modes sensitive to interaction with the lanthanides. The vibrational study gave evidence for the coordination mode of the ligand to lanthanide ions and was in agreement with the other theoretical prediction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号