首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Greatly enhanced and abnormal Raman spectra were discovered in the nominal (Ba1 − xErx)Ti1 − x/4O3 (x = 0.01) (BET) ceramic for the first time and investigated in relation to the site occupations of Er3+ ions. BaTiO3 doped with Ti‐site Er3+ mainly exhibited the common Raman phonon modes of the tetragonal BaTiO3. Er3+ ions substituted for Ba sites are responsible for the abnormal Raman spectra, but the formation of defect complexes will decrease spectral intensity. A large increase in intensity showed a hundredfold selectivity for Ba‐site Er3+ ions over Ti‐site Er3+ ions. A strong EPR signal at g = 1.974 associated with ionized Ba vacancy defects appeared in BET, and the defect chemistry study indicated that the real formula of BET is expressed by (Ba1 − xEr3x/4)(Ti1 − x/4Erx/4)O3. These abnormal Raman signals were verified to originate from a fluorescent effect corresponding to 4S3/24I15/2 transition of Ba‐site Er3+ ions. The fluorescent signals were so intense that they overwhelmed the traditional Raman spectra of BaTiO3. The significance is that the abnormal Raman spectra may act as a probe for the Ba‐site Er3+ occupation in BaTiO3 co‐doped with Er3+ and other dopants. A new broad EPR signal at g = 2.23 was discovered, which originated from Er3+ Kramers ions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Er 3+-doped TiO 2-SiO 2 powders are prepared by the sol-gel method,and they are characterized by high resolution transmission electron microscopy (HR-TEM),X-ray diffraction (XRD) spectra,and Raman spectra of the samples.It is shown that the TiO 2 nanocrystals are surrounded by an SiO 2 glass matrix.The photoluminescence (PL) spectra are recorded at room temperature.A strong green luminescence and less intense red emission are observed in the samples when they are excited at 325 nm.The intensity of the emission,which is related to the defect states,is strongest at the annealing temperature of 800 C.The PL intensity of Er 3+ ions increases with increasing Ti/Si ratio due to energy transfer between nano-TiO 2 particles and Er 3+ ions.  相似文献   

3.
In this study, the principal role of Al2O3 on the features of the photoluminescence spectra of Tm3+ ion and upconversion phenomenon in Tm3+ and Er3+ codoped CaF2−Al2O3−P2O5−SiO2 glass system has been investigated. The concentration of Al2O3 is varied from 2 to 10 mol% while that of Er3+ and Tm3+ is fixed. IR and Raman spectral studies have indicated that there is a gradual increase in the degree of disorder in the glass network with increase in the concentration of Al2O3 up to 6.0 mol%. This is attributed to the presence of Al3+ ions in octahedral positions in larger proportions. When the glasses are doped with Tm3+ ions, the blue and red emissions were observed, whereas in Er3+ doped glasses blue, green and red emissions were observed. When the glasses are codoped with Tm3+ and Er3+ ions and excited at 790 nm, all the three emission lines were observed to be reinforced, especially in the glasses mixed with 6.0 mol% of Al2O3. The IR emission band detected at about 1.8 μm due to 3F43H6 transition of Tm3+ ions is also observed to be strengthened due to codoping. The reasons for enhancement in the intensity of various emission bands due to codoping have been identified and discussed with the help of rate equations for various emission transitions.  相似文献   

4.
The temperature dependence of the Raman bands of Cr4+ modes which show enhanced intensities due to pre‐resonance effects is reported from 293 to 673 K in chromium‐doped titanite (CaTiOSiO4). Some aspects of the temperature dependence of Raman bands in pure, synthetic titanite which have not been previously published are also included in this study. Two Raman‐active components of Ag and Bg symmetry, respectively, of the symmetric Si–O mode in titanite are predicted under P21/a symmetry and also been identified in this phase for the first time. The one component of Bg symmetry disappears just above the antiferroelectric–paraelectric transition at ~500 K in accordance with the predictions under A2/a symmetry for the high‐temperature phase. Two resonance‐enhanced components of the Cr4+–O stretch are also evident in the P21/a phase and only one could be identified in the A2/a phase, again in accordance with group‐theoretical predictions. These observations can be used to characterize the P21/a and A2/a phases of pure synthetic and chromium‐doped titanite. The temperature dependence of the Cr4+–O modes can be approximated by two‐dimensional Ising behavior with the critical exponent β ≈ 1/8 below 450 K. Between 450 and 498 K, anomalous behavior is observed and this could be due to the appearance of mobile anti‐phase boundaries (APBs). Anomalous behavior also persists to temperatures above 500 K. The half‐width of the Ti–O stretching mode reflects the influence of the order parameter (Ti–O displacements) as well as mobile anti‐phase boundaries. No evidence could be found of the existence of other ions such as Cr4+‐ions in Ti‐sites and/or Cr3+‐ions also in Ti‐positions in Cr‐doped titanite in the Raman spectra using different laser lines to excite the spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Infrared-to-visible upconversion luminescence spectra are investigated in Li+ and Er3+ codoped Y2O3 nanocrystals. By introducing Li+ ions, the upconverted emission intensity is found to be greatly enhanced when compared with the nanocrystals with the Li+ absent. The cause of the enhancement is believed to be the modification of the local symmetry of the Er3+ ion, which increases the intra-4f transitions of Er3+ ion, and the homogeneous distribution of Er3+. While in some other Er3+ doped oxides, such as ZnO, ZrO2, etc., the upconversion intensity of Er3+ ions could also be greatly increased by doping Li+.  相似文献   

6.
W. J. Chung  A. Jha  S. Shen  P. Joshi 《哲学杂志》2013,93(12):1197-1207
The effect of Er3+ concentration on the Er3+?:?4I13/2?→?4I15/2 emission in tellurite glasses has been investigated. The full width at half-maximum increased with the increasing concentration of Er2O3 in tellurite glasses. The effect of local structure of Er3+ ions and related spectroscopic changes are taken into account to explain the line broadening. Inhomogeneous broadening due to the distribution of crystal field around the Er3+ ion has little effect on the absorption spectra. Highly efficient energy trapping between the ions was identified from the time-resolved analysis of the fluorescence decay and is found to be responsible for the extended lifetime at intermediate concentrations of Er3+ ions in tellurite glasses. The effect of temperature on spectral line shape has been determined for analysing the contribution of Boltzmann population on line broadening. The increased population of the overlying Stark sublevels at the 4I13/2 energy level via direct pumping and/or interaction between Er3+ ions were also found to be significant for enhancement in spectral line shape at higher concentrations of Er3+ ions in tellurite glasses. It was observed that at higher concentrations of Er3+ ions in glass also enhance the local symmetry of ions, which is apparent from the absorption band of the Er3+?:?4I15/2?→?2H11/2 hypersensitive transition.  相似文献   

7.
Color controllable Er3+/Yb3+‐codoped La2MoO6 upconverting nanocrystals are successfully synthesized via a facile sol‐gel method. Under the irradiation of 980 nm light, the entire samples exhibit dazzling upconversion (UC) emissions arising from the intra‐4f transitions of Er3+ ions and the UC emission intensity is strongly dependent on the Yb3+ ion concentration. Moreover, by controlling the Yb3+ ion concentration, the emission color is changed from green to yellow and finally to red as a result of the energy back transfer from Er3+ to Yb3+ ions, which is further verified by the theoretically discussion based on the steady‐state rate expressions. The optical thermometric properties of the prepared nanocrystals based on the (2H11/2,4S3/2) thermally coupled levels of Er3+ ions are systematically studied by analyzing the temperature‐dependent green UC emission spectra in the range of 303–663 K. The maximum sensor sensitivity of resultant nanocrystals is determined to be 0.0083 K−1 at 510 K. Furthermore, the emitting color of the synthesized nanocrystals relies on the temperature. In addition, the heating effect induced by the excitation pump power is also investigated and the host lattice temperature is enhanced from 319 to 404 K with raising the pump power from 159 to 757 mW.  相似文献   

8.
Er3NbO7 phosphor was synthesized by sintering a mixture of Er2O3 and Nb2O5 powder in a molar ratio of 3:1 at 1600 °C over 55 h. Optical absorption and emission characteristics of Er3+ ions in the calcined Er3NbO7 powder were investigated and discussed compared with ErNbO4 phosphor and a Z-cut congruent Er (2 mol%):LiNbO3 single crystal. The absorption and emission studies show that, due to different crystal structures, the spectroscopic properties of these niobates have some differences in spectral shape, peak position, and relative intensity, especially at 1.5 μm. The most obvious spectral feature of the Er3NbO7 is that the spectral structure of band instead of peak is observed in its absorption or emission spectrum due to the existence of local structural disorder and multiple Er3+ sites. The Er3NbO4 shows stronger upconversion emission than the single crystal but weaker than the ErNbO4. Experimental results show that energy transfer upconversion and/or excited state absorption play a dominant role in the upconversion emissions, and, at higher pump level (>200 mW), the thermal effect becomes significant and results in drop of the upconversion intensity. The 1.5 μm lifetimes of Er3+ ion in the Er3NbO7, ErNbO4 phosphor, and in the Er:LiNbO3 crystal are measured to be ∼5.3, 2.0, and 2.4 ms, respectively. In combination with the measured Raman spectra, the quantum efficiency, multiphonon nonradiative decay rate, and theoretical radiative lifetime of the 1.5 μm emission of the two powder materials are expected. The differences in upconversion intensity and measured 1.5 μm lifetime between the three materials are explained qualitatively.  相似文献   

9.
The local chemical environment of the trivalent lanthanide cations in Nb2O5 nanopowders doped with 1 mol% of Eu3+ and Er3+, prepared via a Pechini approach, has been studied by means of EXAFS at the Ln-K edge. It can be demonstrated that the lanthanide ions enter the Nb2O5 structure as substitutional defects with respect to Nb, giving rise to a very large amount of disorder: both Eu3+ and Er3+ ions substitute Nb in the nine-fold coordinated site, with clustering of oxygen vacancies around the substitutional defects. Valence bond calculations have been used to validate the Ln-O distances obtained by the EXAFS fitting. The Er3+-doped nanocrystalline Nb2O5 sample shows efficient luminescence in the near infrared region around 1.5 μm. The emission and excitation spectra are affected by significant inhomogeneous broadening, in agreement with the presence of strong disorder around the dopant ions in nanosized Nb2O5.  相似文献   

10.
Er3+-doped oxyfluorotellurite glasses with four different concentrations of Er3+ ions have been prepared and investigated their thermal, optical absorption, excitation and luminescence properties. From the DSC spectra, glass transition and onset of crystallization temperatures have been found. Judd-Ofelt intensity parameters have been derived from the absorption spectrum and are in turn used to calculate radiative properties for the important luminescent levels of Er3+ ions. The calculated radiative properties are comparable to experimental values. The glasses show intense green and weak red emission under normal excitation with 451 nm. The decrease in emission intensities and lifetimes of the 4S3/2 level with concentration of Er3+ ions has been explained as due to energy transfer processes between Er3+ ions. The stimulated emission cross-sections and quantum efficiencies of the green and infrared emissions have been determined. The results indicate that the glasses may be suitable for use as a laser medium in making solid-state green laser by normal pumping route and as laser medium and optical amplifier in the 1.5 μm region.  相似文献   

11.
Yb3+ and Er3+ co-doped GdAlO3 phosphors are prepared by the sol–gel method. The effect of doping concentration on the structure and fluorescence properties is investigated by X-ray diffraction (XRD) and photoluminescence, respectively. XRD pattern indicates that the sample structure belongs to orthorhombic. The photoluminescence results show that both green and red fluorescence emission and upconversion emission intensities decrease with an increase in Yb3+ concentration due to the cross-relaxation process between Yb3+ and Er3+ ions. Based on the emission spectra, the mechanism of the upconversion emission is discussed, and we concluded that the upconversion emission is a two-photon process.  相似文献   

12.
肖凯  杨中民  冯洲明 《物理学报》2007,56(6):3178-3184
研究了Er3+离子掺杂钡镓锗玻璃的吸收光谱、拉曼光谱和上转换光谱.分析了Er3+离子在钡镓锗玻璃中的上转换发光机理.结果表明:玻璃的最大声子能量为828cm-1,紫外截止波长为275nm.采用800nm和980nmLD激发玻璃样品,在室温下观察到强烈的上转换绿光和红光发射.随着Er3+离子浓度的增加,绿光发光强度先增加后减小,而红光发光强度呈单调递增趋势.能量分析表明:800nmLD激发产生的绿光主要源于Er3+离子4I13/2能级的激发态吸收过程;红光发射主要源于Er3+离子4I13/2能级与4I11/2能级之间的能量转移过程.980nmLD激发产生的绿光主要源于Er3+离子4I11/2能级之间的能量转移过程;而红光发射主要源于Er3+离子4I13/2能级与4I11/2能级之间的能量转移过程和4I13/2能级的激发态吸收过程.通过量子效率分析,发现采用800nmLD激发Er3+离子掺杂浓度为1mol% 的样品时,上转换绿光发光效率最高. 关键词: 上转换发光机理 3+离子掺杂')" href="#">Er3+离子掺杂 钡镓锗玻璃  相似文献   

13.
Yb3+/Er3+ co-doped Gd6MoO12 and Yb3+/Er3+/Li+ tri-doped Gd6MoO12 phosphors were prepared by adjusting the annealing temperature via the high temperature solid-state method. Under the excitation of 980 nm semiconductor, the upconversion luminescence properties were investigated and discussed. In the experimental process, we get the optimum Yb3+ concentration and the concentration quench effect will happen while the concentration extends the given region. According to the Yb3+ concentration quenching effects, the critical distance between Yb3+ ions had been calculated. The measured UC luminescence exhibited a strong red emission near 660 nm and green emission at 530 nm and 550 nm, which are due to the transitions of Er3+(4F9/2, 2H11/2, 4S3/2)  Er3+(4I15/2). Then the effect of excitation power density in different regions on the upconversion mechanisms was investigated and the calculated results demonstrate that the green and red upconversion is a two-photon process. A possible mechanism was discussed. After Li+ ions mixing, the upconversion emission enhanced largely, and the optimum Li+ concentration was obtained while fixed the Yb3+ and Er3+ on the above optimum concentration. This enhancement owns to the decrease of the local symmetry around Er3+ after Li+ ions doping into the system. This result indicates that Li+ is a promising candidate for improving luminescence in some case.  相似文献   

14.
测量了不同掺杂浓度下Er3+离子在碲酸盐玻璃中的吸收光谱、发射光谱和Er3+离子的荧光寿命,计算了Er3+离子的发射截面σe,分析 了Er 3+离子掺杂浓度对其发光强度和荧光寿命的影响.结果表明,Er3+离子掺 杂浓度较低时,对其荧光强度和荧光寿命没有显著的影响;掺杂浓度高时,出现了浓度猝灭 效应,使Er3+离 子荧光光强度降低,荧光寿命下降.实验确定了掺杂浓度最优值,同时对浓度猝灭机制进行 了分析. 关键词: 碲锌碱玻璃 3+离子')" href="#">Er3+离子 掺杂浓度 发光和荧光寿命  相似文献   

15.
Starting from previous investigations in LiNbO3 bulk crystals, we studied the optical properties of Er3+ ions in Ti:LiNbO3 channel waveguides and investigated the waveguide-specific lattice environment of the Er3+ ions (“sites”) caused by the doping method used and the presence of a large number of Ti4+ ions. For that purpose the method of combined excitation–emission spectroscopy was applied for the first time to waveguides at low temperatures. Comparing the spectroscopic results obtained for the green, red, and near-IR luminescence (λ≈550, ≈650 and ≈980 nm) under direct (450 nm), 2-step (980 nm), and 3-step (1.5 μm) laser excitation, we found several distinguishable Er3+ sites which in terms of energy levels and relative numbers are similar to those in bulk material, but exhibit significantly different up-conversion efficiencies and strongly inhomogeneously broadened transitions. Moreover, we were able to distinguish isolated and cluster Er3+ sites by their characteristic excitation and emission transition energies and studied the respective excitation/relaxation channels. The cluster sites are most efficient in the up-conversion process, especially under 3-step excitation. Using accepted microscopic models for Er3+ and Ti4+ incorporation into the LiNbO3 crystal lattice, the site distribution and up-conversion mechanisms are elucidated and their consequences for laser applications in different spectral regions are discussed. Received: 16 November 2000 / Published online: 21 March 2001  相似文献   

16.
The phosphors, Bi3+- activated Gd2O3:Er3+, were prepared by sol-gel combustion method, and their photoluminescent properties were investigated under ultraviolet light excitation. The emission spectrum exhibited sharp peaks at about 520, 535, 545, 550 and 559 nm due to (2H11/2, 4S3/2)→4I15/2 transitions of Er3+ ions. The luminescent intensity was remarkably improved by the incorporation of Bi3+ ions under 340 nm light excitation, which suggested very efficient energy transfer from Bi3+ ions to Er3+ions. The introducing of Bi3+ ions broadened the excitation band of the phosphor, of which a new strong peak occurred ranging from 320 to 360 nm due to the 6s2→6s6p transition of Bi3+ ions. There is significant energy overlap between the emission band of Bi3+ ions and the excitation band of Er3+ ions. Under 340 nm light excitation, Bi3+ absorbed most of the energy and transferred it to Er3+. The energy transfer probability from Bi3+ to Er3+ is strongly dependent on the Bi3+ ion concentration. Also, the sensitization effectiveness was studied and discussed in this paper.  相似文献   

17.
The upconversion luminescence spectral intensity of Er3+ in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ are investigated. Yb3+ ions as a tradition sensibilizer have efficient energy transfer processes from Yb3+ (2F5/2) to Er3+ (4I13/2, 4I11/2, 4F9/2), which lead to the increment of upconversion luminescence intensity. Following by adding Li+ to the Er3+ and Yb3+ codoped ZnO nanocrystals, the upconversion intensity emitted by Er3+ ions is found greatly enhanced. The enhancement is attributed to the distortion of the local field symmetry of Er3+ ions, so increases various intra-4f transitions of Er3+ ions. Both Yb3+ and Li+ can disperse Er3+ ions in specimen, so reduced the interaction between neighboring Er3+ ions.  相似文献   

18.
We have investigated the EPR of isotopically enriched 168Er3+ in Y1?cH1.92:Erc where c = 100 and 1400 ppm, at both 1.4 and 9 GHz and between 1.5 and 50 K. Resonance lines were observed from Er3+ ions in both sites of cubic symmetry and sites of axial symmetry. We determine the numbers of Er3+ in cubic, and C4v axial symmetry to be in the ratio 2:1. The cubic site resonance line is at g = 6.85 ± 0.07 and is attributed to a Γ7 doublet. The linewidth has a linear thermal broadening of 3.9 ± 0.05 gauss K-1 below circa 7 K. From the nonlinear thermal broadening above this temperature we determine the first excited state, in the cubic crystal field scheme, to be a Γ8 at 35 ± 10 K above the Γ7 ground state. We have investigated the origins of the (T = 0) residual linewidth for the ions in cubic symmetry, and conclude there to be a small but significant contribution due to unresolved transferred hyperfine structure from the surrounding hydrogen nuclei.  相似文献   

19.
The use of optically robust, luminescent lanthanide-based particles is becoming an area of interest for biolabel-related chemistry, due to their long lifetimes and range of non-overlapping absorption and emission lines from the visible to the near-infrared. We report the synthesis and optical properties of water-soluble, luminescent Ln3+-doped nanoparticles (NPs) coordinated with a hydrophilic (RO)PO32− ligand that facilitates the stabilization of the NPs in aqueous conditions, and that regulates particle growth to the nanometer range. The use of lanthanide ions as dopants, in particular Eu3+ and Er3+ ions, yields optically robust particles with narrow emission lines in the visible (591 nm) and in the near-infrared (1530 nm), respectively. Luminescent lifetimes range from the microsecond to the millisecond for Er3+ and Eu3+ ions, respectively, and the NPs are not expected to be susceptible to photo-bleaching due to the fact that the emissions arise from intra-4f transitions of the lanthanide ions.  相似文献   

20.
Er/Bi codoped SiO2 thin films were prepared by sol-gel method and spin-on technology with subsequent annealing process. The bismuth silicate crystal phase appeared at low annealing temperature while vanished as annealing temperature exceeded 1000 °C, characterized by X-ray diffraction, and Rutherford backscattering measurements well explained the structure change of the films, which was due to the decrease of bismuth concentration. Fine structures of the Er3+-related 1.54 μm light emission (line width less than 7 nm) at room temperature was observed by photoluminescence (PL) measurement. The PL intensity at 1.54 μm reached maximum at 800 °C and decreased dramatically at 1000 °C. The PL dependent annealing temperature was studied and suggested a clear link with bismuth silicate phase. Excitation spectrum measurements further reveal the role of Bi3+ ions for Er3+ ions near infrared light emission. Through sol-gel method and thermal treatment, Bi3+ ions can provide a perfect environment for Er3+ ion light emission by forming Er-Bi-Si-O complex. Furthermore, energy transfer from Bi3+ ions to Er3+ ions is evidenced and found to be a more efficient way for Er3+ ions near infrared emission. This makes the Bi3+ ions doped material a promising application for future erbium-doped waveguide amplifier and infrared LED.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号