首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用银溶胶膜探测水中抗生素的表面增强拉曼光谱研究   总被引:2,自引:0,他引:2  
以自组装法制备的银溶胶膜为表面增强拉曼散射活性基底实现了对水中抗生素的痕量检测。采用微波加热法制备银溶胶,自组装法制备银溶胶膜。通过改变银溶胶的pH值及镀膜的次数,研究其对抗生素增强效果的影响。实验发现,采用不同pH值的银溶胶镀膜所获得的银溶胶膜的增强效果有很大差异,当银溶胶pH=4,且镀膜次数为五次时,增强效果最佳。以此银溶胶膜为基底对三种抗生素(氯霉素、环丙沙星、恩诺沙星)进行了SERS检测,可以检测到的最低浓度分别为120,15,120 nmol·L-1。结果表明,利用改进方法制备的银溶胶膜,可以对水中抗生素进行痕量检测,为实现养殖水中残留抗生素的检测提供了方法。  相似文献   

2.
表面增强拉曼光谱技术在食品痕量化学危害检测中的应用   总被引:1,自引:0,他引:1  
表面增强拉曼光谱(surface-enhanced Raman spectroscopy, SERS)技术是基于被测分子吸附在某些经特殊处理、具有纳米结构的金属表面具有极强拉曼散射增强效应的分子振动光谱技术。因SERS技术具有前处理简单、操作简便、检测时间短、灵敏度高等优点,在食品安全检测领域具有良好的应用前景。食品中化学危害残留超标是主要的食品安全问题之一,已引起全球的关注,SERS技术对食品中痕量化学危害的分子识别及定量分析检测的相关研究报道数量近年来呈上升趋势。本综述概括了应用SERS对食品中常被检出的非法添加物、农药残留、抗生素及其他药物残留检测中的应用和研究进展,涉及的拉曼散射增强基底体系多种多样,如金或银等纳米溶胶体系、金纳米固体表面基底、双金属或磁性内核等复合基底。研究对象一般以化学危害物的标准溶液为起点,扩展到常被检出该化学危害物的相应食品中,如乳制品、鱼、果蔬等。由于表面增强拉曼散射强度受多种因素的影响,SERS谱图的重现性还是一个亟需解决的难题,而食品复杂体系中非目标组分对被分析物拉曼散射信号的干扰导致SERS技术还不能成为一种有效的常规快速分析方法,但SERS为食品及其他复杂体系中痕量化学物的检测提供了一个新的极具潜力的工具。  相似文献   

3.
Surface‐enhanced Raman spectroscopy (SERS) was used for rapid detection of sodium thiocyanate in milk employing silver aggregates as active substrate. Silver nanoparticles were induced to silver aggregates by trichloroacetic acid (TCA). The limit of detection (LOD) for sodium thiocyanate was 10−2 µg ml−1 in water with an analytical enhancement factor of 5.4 × 106. The silver aggregates represent good reproducibility and stability. Good linear relationship was obtained for sodium thiocyanate in milk at concentration ranges from 0.1 to 10 µg ml−1 (R2 = 0.995). Using TCA as protein precipitator, silver colloid would aggregate spontaneously when mixing with samples during SERS measurement without the need of additional aggregating agent. The simple pretreatment procedures and analytical methods are less time consuming (<10 min) and environmentally friendly, making the proposed method much practical for in situ detection of sodium thiocyanate in market milk. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the fabrication of an active surface‐enhanced Raman scattering (SERS) substrate by self‐assembled silver nanoparticles on a monolayer of 4‐aminophenyl‐group‐modified glassy carbon (GC) is reported. Silver nanoparticles are attached to the substrate through the electrostatic force between the negatively charged silver nanoparticles and the positively charged 4‐aminophenyl groups on GC. The active SERS substrate has been characterized by means of tapping‐mode atomic force microscopy (AFM), indicating that large quantities of silver nanoparticles are uniformly coated on the substrate. Rhodamine 6G (R6G) and p‐aminothiophenol (p‐ATP) are used as the probe molecules for SERS, resulting in high sensitivity to the SERS response, with the detection limit reaching as low as 10−9 M . This approach is easily controlled and reproducible, and more importantly, can extend the range of usable substrates to carbon‐based materials for SERS with high sensitivity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Techniques for rapid and sensitive detection of energetics such as cyclotrimethylenetrinitramine (RDX) are needed both for environmental and security screening applications. Here we report the use of surface‐enhanced Raman scattering (SERS) spectroscopy to detect traces of RDX with good sensitivity and reproducibility. Using gold (Au) nanoparticles (∼90–100 nm in diameter) as SERS substrates, RDX was detectable at concentrations as low as 0.15 mg/l in a contaminated groundwater sample. This detection limit is about two orders of magnitude lower than those reported previously using SERS techniques. A surface enhancement factor of ∼6 × 104 was obtained. This research further demonstrates the potential for using SERS as a rapid, in situ field screening tool for energetics detection when coupled with a portable Raman spectrometer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Lactic acid is a simple and effective indicator for estimating physiological function. Rapid and sensitive detection of lactic acid is very useful in clinical diagnosis. However, the concentration of lactic acid in the physiological state is too low to be detected using traditional Raman spectroscopy. We applied silver colloidal nanoparticles‐mediated surface‐enhanced Raman spectroscopy (SERS) for rapid identification and quantification of lactic acid. The standard SERS spectra of lactic acid were defined and the 1395 cm−1 band intensity was used for quantification from 0.3 to 2 mM (R2 = 0.99). In clinical blood sample measurement, the ultrafiltration (cutoff value 5 kDa) can efficiently reduce background fluorescence to improve SERS performance. We established identical and optimal procedure by adjusting reaction time and volume ratio of serum and nanoparticles to obtain high SERS reproducibility. Finally, we showed that silver colloidal nanoparticles‐mediated SERS technique was successfully applied to detect lactic acid at physiological concentrations in the blood. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A method for rapid detection of foreign protein contamination in complex food matrices is critically needed. Here we present a novel method that combines immunomagnetic separation (IMS) and surface‐enhanced Raman scattering (SERS) to detect ovalbumin (OVA), an egg white protein, added into whole milk. IMS was used to specifically capture the OVA out of the milk. Then SERS was applied to analyze the IMS eluate using silver dendrites as the substrate. Two SERS sample preparation methods, namely solution based and substrate based, were used to prepare the IMS eluate for SERS analysis. Results show both methods were able to detect 1 µg OVA in 1 ml milk (1 part per million). Based on the results of principal component analysis and partial least‐squares analysis, solution SERS was more capable of quantitative analysis, while substrate SERS was more sensitive for qualitative analysis. The total analytical time for IMS–SERS was less than 20 min, which satisfied the requirement of rapid detection in a milk processing facility. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
使用种子生长法制备得到银纳米立方,扫描电镜的表征结果表明制备得到的银纳米立方尺寸为(61.5±4.4) nm,相对标准偏差为7.2%。利用表面替换技术将其表面的CTAC替换为更有利于SERS检测的柠檬酸根。然后基于具有超润滑特性的SLIPS衬底,构建出以银立方作为组装单元的具有三维热点的SERS基底。利用该三维SERS基底分别检测了水中的三环唑和乙醇中的福美双,检测限分别可达到52.8和41.6 nmol·L-1。实验结果表明银立方三维热点SERS基底具有较高的灵敏度,能够应用于多种溶剂中农药的快速检测,对于实际场景下农药残留的快速检测具有重要的意义。  相似文献   

9.
We present experimental results to quantify and optimize the surface‐enhanced Raman scattering (SERS) activity of naturally grown silver nanoparticles. Ag nanoparticle ensembles with mean equivalent radii ranging from 10.6 to 20.3 nm were prepared under ultrahigh vacuum conditions by Volmer–Weber growth on quartz plates. A tuning of the localized surface plasmon polariton resonance wavelength from 453 to 548 nm was performed by varying the morphology of the silver nanoparticles. The dependence of the SERS activity on the plasmon resonance wavelength was investigated with a Raman set‐up containing a microsystem light source with an emission line at 488 nm. Shifted excitation Raman difference spectroscopy was applied to remove the fluorescence‐based background from the SERS spectra of pyrene in water using two slightly different emission wavelengths (487.61 and 487.91 nm) of the microsystem light source. We demonstrate that the Raman activities for all SERS substrates are available in the nanomolar range in a water sample. However, the Raman activity crucially depends on the plasmon resonance wavelength of the nanoparticle ensembles. Although for an on‐resonance ensemble the limit of detection for pyrene in water is very low and was estimated to be 2 nmol/L, it increases rapidly to several tens of nanomol for slightly off‐resonance ensembles. Hence, the highest SERS activity was obtained with a nanoparticle ensemble exhibiting a plasmon resonance wavelength at 491 nm, which almost coincides with the excitation wavelengths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Silver nanoparticles (Ag NPs) enjoy a reputation as an ultrasensitive substrate for surface‐enhanced Raman spectroscopy (SERS). However, large‐scale synthesis of Ag NPs in a controlled manner is a challenging task for a long period of time. Here, we reported a simple seed‐mediated method to synthesize Ag NPs with controllable sizes from 50 to 300 nm, which were characterized by scanning electron microscopy (SEM) and UV–Vis spectroscopy. SERS spectra of Rhodamine 6G (R6G) from the as‐prepared Ag NPs substrates indicate that the enhancement capability of Ag NPs varies with different excitation wavelengths. The Ag NPs with average sizes of ~150, ~175, and ~225 nm show the highest SERS activities for 532, 633, and 785‐nm excitation, respectively. Significantly, 150‐nm Ag NPs exhibit an enhancement factor exceeding 108 for pyridine (Py) molecules in electrochemical SERS (EC‐SERS) measurements. Furthermore, finite‐difference time‐domain (FDTD) calculation is employed to explain the size‐dependent SERS activity. Finally, the potential of the as‐prepared SERS substrates is demonstrated with the detection of malachite green. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
With p‐thiocresol as internal standard, quantitative analysis of captopril, a synthetic angiotensin converting enzyme inhibitor, was achieved by the combination of the multiplicative effects model with surface‐enhanced Raman spectroscopy (SERS). The multiplicative effects model was adopted to correct the detrimental effects caused by the heterogeneity in the physical properties of enhancing substrate (i.e. Ag nano‐particles). Experimental results showed that the calibration model built on the SERS spectra of the calibration captopril samples prepared with ultrapure water could attain quite satisfactory concentration predictions for captopril in both real‐world tablet samples and plasma samples. The recovery rates were in the range of 94.3% to 109.8%, which were in substantial agreement with the corresponding results of LC‐MS/MS. The limit of detection and limit of quantification were estimated to be 0.149 and 0.451 μM, respectively. The proposed approach has advantages of relatively low cost, simplicity, high sensitivity and good accuracy and therefore can be further developed and extended to a routine method for the quantification of captopril in complex systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A method to stabilize silver surface‐enhanced Raman spectroscopy (SERS) substrates for in situ, high‐temperature applications is demonstrated. Silver island films grown by thermal evaporation were coated with a thin layer (from 2.5 to 5 nm) of alumina by atomic layer deposition (ALD), which protects and stabilizes the SERS‐active substrate without eliminating the Raman enhancement. The temporal stability of the alumina‐coated silver island films was examined by measurement of the Raman intensity of rhodamine 6G molecules deposited onto bare and alumina‐coated silver substrates over the course of 34 days. The coated substrates showed almost no change in SERS enhancement, while the uncoated substrates exhibited a significant decrease in Raman intensity. To demonstrate the feasibility of the alumina‐coated silver substrate as a probe of adsorbates and reactions at elevated temperatures, an in situ SERS measurement of calcium nitrate tetrahydrate on bare and alumina‐coated silver was performed at temperatures ranging from 25 to 400 °C. ALD deposition of an ultrathin alumina layer significantly improved the thermal stability of the SERS substrate, thus enabling in situ detection of the dehydration of the calcium nitrate tetrahydrate at an elevated temperature. Despite some loss of Raman signal, the coated substrate exhibited greater thermal stability compared to the uncoated substrate. These experiments show that ALD can be used to synthesize stable SERS substrates capable of measuring adsorbates and processes at high temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
With the global surge of terrorism and the increased use of bombs in terrorist attacks, national defence and security departments now demand techniques for quick and reliable analysis, in particular, for detection of toxic and explosive substances. One approach is to separate different analytes and matrix material before detection. In this work microliquid chromatography was used to separate two dinitrotoluene (DNT) isomers prior to detection via online UV–Vis spectroscopy. For identification, retention times were compared with reference samples and quantification was done by integration of UV–Vis absorption. Because UV detection is not particularly selective, Raman microscopic analysis was coupled to the liquid chromatography using a flow‐through microdispenser. Because DNT is difficult to detect with conventional Raman spectroscopy, the sensitivity was increased via surface‐enhanced Raman scattering (SERS) using silver‐quantum dots. Different analytical approaches to identify and quantify mixtures of two DNT isomers were evaluated. Good quantitative results were obtained using UV detection after microchromatographic separation (Limit of Detection: 0.11 and 0.06 for 2,4‐DNT and 2,6‐DNT). Coupling with SERS allowed for more confident differentiation between the highly structurally similar DNT isomers because of the additional spectral information provided by SERS. The application of a partial least squares algorithm also allowed direct SERS detection of DNT mixtures (root mean square error of prediction: 0.82 and 0.79 mg·L–1 for 2,4‐DNT and 2,6‐DNT), circumventing the time‐consuming separation step completely. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Ethyl carbamate (EC), a potentially toxic compound, is found in alcoholic beverages and fermented foodstuff. A combined experimental and theoretical study of Raman on EC is reported in this work for the first time. The Raman bands observed for EC in solid phase are characteristic for the carbonyl group, C―C, C―H and N―H stretching and deformation vibrations. These spectral features coupled with a pKa study allowed establishing the neutral species of EC present in the aqueous solutions experimentally tested at different concentrations. In addition, by performing a density functional theory study in the gas phase, the calculated geometry, the harmonic vibrational modes, and the Raman scattering activities of EC were found to be in good agreement with our experimental data and helped establish the surface‐enhanced Raman scattering (SERS) behavior and EC adsorption geometry on the silver surfaces. The Raman peak at 1006 cm−1, assigned to the υs(CC) + ω(CH) modes, the strongest and best reproducible peak in the SERS spectra, was used for a quantitative evaluation of EC. The limit of detection, which corresponds to a signal‐to‐noise ratio equal to 3, was found to be 2 × 10−7 M (17.8 µg l−1). SERS spectra obtained by using hydroxylamine hydrochloride‐reduced silver nanoparticles provide a fast and reproducible qualitative and quantitative determination of EC in aqueous solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Wei Ji  Li Wang  He Qian 《光谱学快报》2014,47(6):451-457
Amoxicillin is one of the most widely used antibiotics for food-producing animals and human beings. Amoxicillin residue in food-producing animals has become a growing concern for consumers because it has been proven to show potential carcinogenic, teratogenic, and mutagenic effects at a high-dose level in clinical use. So there is an urgency to develop a rapid, simple, and accurate detection method for amoxicillin residue in animal foods. In this study, surface-enhanced Raman spectroscopy (SERS) coupled with gold nanoparticles was used for the rapid analysis of amoxicillin. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 6-31G(d) basis set to analyze the assignment of vibrations. Results showed that the theoretical Raman spectra of amoxicillin were completely consistent with its experimental spectra. Gold nanoparticles used as a SERS substrate can significantly increase spectra signals of amoxicillin, and acidic pH can improve its characteristic peaks' shape and SERS sensitivity. Under optimum pH (pH 2), the detection limit could reach the level of 1 µg/mL in case of distilled water as solvent. Quantitative analysis of amoxicillin residues in foods revealed that the SERS technique with gold nanoparticles was sensitive and of a good stability and linear correlation. It was well suited for rapid analysis of amoxicillin residue in a great deal of food samples.  相似文献   

16.
A controllable roughened silver surface with high surface‐enhanced Raman scattering (SERS) activity and high reproducibility has been developed in this study. This silver surface was prepared by silver nucleation in polyelectrolyte multilayers (PEMs) and silver‐enlarged growth. First, the small Ag nuclei were synthesized by NaBH4 in situ reduction of Ag ions on a surface of PEMs. Then the small Ag nuclei formed were effectively enlarged by using a mixture of commercially available reagents named Li Silver . The optical properties and morphologies of the silver substrates have been investigated by ultraviolet–visible (UV–vis) spectroscopy and atomic force microscopy (AFM). The UV–vis and AFM results revealed that the small Ag nuclei separately appeared on the PEMs after NaBH4 in situ reduction. The size of the enlarged Ag nanoparticles can be easily controlled with the immersing cycle in Li Silver. 4‐Mercaptopyridine (4‐MPY) and Rhodamine 6G (R6G) have been used as Raman probes to evaluate the properties of the new SERS substrates. It has been found that the enhancement factor of R6G reached ∼109 after treatment in Li Silver. Reproducibility has been investigated using the SERS signal intensity at 1094 cm−1 of 4‐MPY. Signals collected over multiple spots within the same substrate resulted in a relative standard deviation (RSD) of 6.38%, while an RSD of 10.33% was measured in signals collected from different substrates. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Glass‐embedded silver nanoparticle patterns were fabricated by masked silver–sodium ion‐exchange process followed by etching to reveal the particles for surface‐enhanced Raman scattering (SERS). The intensity of the enhanced Raman signal is comparable to that of the fluorescence, and the detection limit of 1 nM for Rhodamine 6G has been achieved. Raman images at different etching depths and corresponding morphological images are compared to find optimal SERS signal. Our results demonstrate that silver nanoparticle patterns embedded in glass can be used as SERS‐active substrates. Nanoparticles can be formed in a glass of high optical quality and have potential to be integrated with optical waveguides for a sensor chip. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Silver nanoplates were prepared in a dual reduction system with NaBH4 and sodium citrate both as reducing agents. And then the as-prepared nanoplates could be growing up through multistage growth methodology. The average edge length of Ag nanoplates can be tailored from 40 nm to 260 nm without changing their shape, crystallinity, and the average thickness. Furthermore, the effectiveness of these silver nanoplates as substrates prepared by the silanization self-assembly method toward surface-enhanced Raman scattering (SERS) detection was evaluated by using 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) as probe molecules. It was found that the enhancement ability of the silver nanoplates film is remarkable lower than that of the spherical silver nanoparticle film. The reason is attributed to the electromagnetic mechanism and chemical mechanism. This work will be of great significance in understanding the SERS enhancement mechanism and in the fabrication of nanoparticle films for biosensing.  相似文献   

19.
Silver salts of aromatic thiols are one class of organic–inorganic heterostructured materials, showing peculiar photoreaction characteristics. When an argon ion laser is exposed to silver benzenethiolate (AgBT), for instance, its Raman spectrum changes over time, eventually becoming the same as the surface‐enhanced Raman scattering (SERS) spectrum of benzenethiol on a roughened Ag substrate. AgBT and its analogs can thus be used as a core material of molecular sensors operating via SERS; we demonstrate this specifically, by monitoring the SERS peaks of BT, in which biotinylated AgBT selectively recognizes streptavidin molecules down to concentrations of 10−11 g ml−1 (i.e. ∼0.2 pM ). Since numerous silver thiolates can be used as the core material, multiple bioassays are readily accomplished using the present methodology. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The characteristics of the sol–gel matrix embedding Ag nanoparticles functionalized with 25,27‐dimercaptoacetic acid‐26,28‐dihydroxy‐4‐tert‐butylcalix[4]arene (DMCX) suitable for the in situ detection of polycyclic aromatic hydrocarbons (PAHs) in seawater is presented. The DMCX‐functionalized silver nanoparticles were produced by the thermal reduction method in xerogel film. The silver colloid blocks were formed in the sol–gel matrix, with a diameter ranging from 50 to 120 nm. DMCX forming the monolayer on the silver nanoparticle surface contributes to the surface‐enhanced Raman scattering (SERS) activity due to the aggregation of silver nanoparticles and the preconcentration of PAH molecules within the zone of electromagnetic enhancement. When selected, PAH molecules e.g. pyrene and naphthalene were adsorbed onto the SERS substrate; Raman band positions of PAH were slightly shifted. A calibration procedure reveals that this type of SERS substrate has a limit of detection of 3 × 10−10 mol/l for pyrene and 13 × 10−9 mol/l for naphthalene in artificial seawater. The Raman signal response on a pyrene concentration change in artificial seawater was evaluated using a 671‐nm Raman setup with a flow‐through cell. This type of SERS substrate will be suitable for the in situ trace detection of pollutant chemicals in seawater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号