首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
Polycrystalline Zn3N2 films are prepared on Si and quartz glass substrates by RF magnetron sputtering at room temperature. The structural and optical properties are studied by X‐ray diffraction and double beam spectrophotometer, respectively. X‐ray diffraction indicates that the Zn3N2 films deposited on Si and quartz glass substrates both have a preferred orientation in (321) and (442), also are cubic in structure with the lattice constant a=0.9847 and 0.9783 nm, respectively. The absorption coefficients as well as the film thickness are calculated from the transmission spectra, and their dependence on photon energy is examined to determine the optical band gap. Zn3N2 is determined to be an indirect‐gap semiconductor with the band gap of 2.11(2) eV. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
N‐implantation to GaSe single crystals was carried out perpendicular to c‐axis with ion beam of 6 × 1015 ions/cm2 dose having energy values 30 keV and 60 keV. Temperature dependent electrical conductivities and Hall mobilities of implanted samples were measured along the layer in the temperature range of 100‐320 K. It was observed that N‐implantation decreases the resistivity values down to 103 Ω‐cm depending on the annealing temperature, from the room temperature resistivity values of as‐grown samples lying in the range 106‐107 Ω‐cm. The temperature dependent conductivities exhibits two regions (100‐190 and 200‐320 K) with the activation energies of 234‐267 meV and 26‐74 meV, for the annealing temperatures of 500 and 700 °C, respectively. The temperature dependence of Hall mobility for the sample annealed at 500 °C shows abrupt increase and decrease as the ambient temperature increases. The analysis of the mobility‐temperature dependence in the studied temperature range showed that impurity scattering and lattice scattering mechanisms are effective at different temperature regions with high temperature exponent. Annealing of the samples at 700 °C shifted impurity scattering mechanism toward higher temperature regions. In order to obtain the information about the defect produced by N‐implantation, the carrier density was analyzed by using single donor‐single acceptor model. We found acceptor ionization energy as Ea = 450 meV, and acceptor and donor concentration as 1.3 × 1013 and Nd = 3.5 × 1010 cm−3, respectively. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Zn1‐xCdxO layers were deposited on the sapphire substrate using the radio‐frequency magnetron co‐sputtering system. The grown Zn1‐xCdxO layers were carried out in the post‐annealing treatment for 1 min at the 800 °C oxygen‐ambient by the rapid thermal annealing (RTA) method. X‐ray diffraction (XRD) experiment shows that the Zn1‐xCdxO layers are changed from the single phase of the hexagonal structure at 0≤x ≤0.08 to the double phase of hexagonal‐and‐cubic structure at x =0.13. Thus, the maximum Cd‐composition ratio with the hexagonal structure was found out to be x =0.08. Also, the crystallinity of Zn1‐xCdxO layers at x =0.13 was remarkably improved by the RTA annealing treatment. This crystal quality improvement was thought to be associated with the relaxation of the compressive strain remaining in the Zn1‐xCdxO layers. Therefore, the results of XRD and transmittance lead that the crystal quality of the Zn1‐xCdxO layers forming the hexagonal ZnO phase is better than that forming the cubic CdO phase. Consequently, the reliable formation and the crystallinity of the Zn1‐xCdxO layers were achieved by using the RTA method of short‐time thermal‐annealing at the high temperature. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
ZnO crystals were synthesized from basic aqueous solutions including zincate ions stabilized with triethanolamine (N(C2H4OH)3, teaH3) by heating at 60°C. The influence of the basicity of the solutions on the morphology of the ZnO crystals was examined. The aqueous solutions were prepared using ZnSO4·7H2O, N(CH3)4OH (TMAOH), and teaH3 as a zinc source, a base, and a stabilizer, respectively, at a zinc concentration of 0.2 M at a teaH3 / Zn molar ratio of 4. Clear solutions were obtained at a molar ratio of TMAOH / Zn ≥ 3.0. When the clear solutions, in which glass or polyester substrates were placed, were heated at 60°C, agglomerates of ZnO crystals were deposited on the substrates in the TMAOH / Zn range from 3.0 to 3.6. With increasing the TMAOH / Zn ratio, the shape of the resulting ZnO crystals changed from a short asymmetric column with a hexagonal flat edge and a rounded one, through a rocket‐like shape formed by intergrowth, to a hexagonal rod. Although no films of ZnO were formed, ZnO crystals with different shapes were synthesized. When the glass substrates pre‐coated with a ZnO thin film by a sol‐gel method were used, highly oriented, dense ZnO films were formed. The films consisted of rod‐like crystals aligned normal to the substrate surface. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Novel X-type polyester 5 containing 4-(2’-carbomethoxy-2’-cyano)vinyl-6-nitroresorcinoxy group as nonlinear optical (NLO) chromophore, which constitutes parts of the polymer backbone, was prepared and characterized. Polyester 5 is soluble in common organic solvents such as N,N-dimethylformamide and acetone. Polyester 5 shows a thermal stability up to 280°C from thermogravimetric analysis with glass-transition temperature obtained from differential scanning calorimetry of near 116°C. The second harmonic generation (SHG) coefficient (d33) of poled polymer film at the 1064 nm fundamental wavelength is 4.25 × 10?9 esu. The dipole alignment exhibits a thermal stability even at 4°C higher than glass-transition temperature (Tg), and no significant SHG decay is observed below 120°C due to the partial main-chain character of polymer structure, which is acceptable for NLO device applications.  相似文献   

6.
The tin‐rich region of the system Sn‐Zn‐Ti system has been studied by diffusion couples, differential scanning calorimetry and electron microprobe analyses. Ternary eutectic reaction occurs at 193.7°C near to the binary tin‐zinc eutectic point and titanium content less than 0.9 at.% Ti. Three ternary compounds with approximate formulae: Ti8Sn5Zn2 to Ti5Sn3Zn, TiSn4Zn5 and Ti2Sn4Zn3 have been observed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Various Cu‐phthalocyanine (CuPc) films were grown from physical vapor deposition on top of indium‐tin‐oxide glass substrates by controlling substrate temperature (Tsub), source temperature (Tsou), and growth time. From side‐view SEM pictures, the growth rates for these CuPc films are estimated and can be categorized into three regions. From the Arrhenius plot of growth rate versus 1/Tsub, the activation energy EA can be obtained. As Tsou = 390 °C, for region (A) with Tsub < 140 °C, the growth of CuPc films is dominated by the adhesion process with EA = 810 meV. For region (B) with 140 °C < Tsub < 320 °C, the growth is then limited by the steric character associated with the organic molecular solids with EA = 740 meV. For region (C) with Tsub > 320 °C, the re‐evaporation of the CuPc adhered molecules from the interface becomes dominant. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The crystal structure of N‐[(1Z)‐1‐(3‐methyl‐3‐phenylcyclobutyl)‐2‐thiomorpholin‐4‐ylethylidene] thiourea (C18H26N4S2) has been determined by X‐ray crystallographic techniques. The compound crystallizes in the orthorhombic space group Pbca, with unit cell parameters: a = 15.692(3), b = 20.803(8), c = 11.979(6)Å, Z = 8, V = 3911(7)Å3. The crystal structure was solved by direct methods and refined by full‐matrix least squares to a final R‐value of 0.084 for 1447 observed reflections [I > 2σ ( I ) ]. In the thiosemicarbazide moiety, the S = C bond length is 1.656(6), N‐C‐N angle is 115.6(5)°. The crystal structure is stabilized by the intermolecular N‐H...S hydrogen bonds. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The accidental formation of Zn(II) bis(N,N‐diethyldithiocarbamate) (1) and Cd(II) bis(N,N diethyldithiocarbamate) (2) during the synthesis of the target heterobinuclear Mo‐Cd‐dithiocarbamate or Mo‐Zn‐dithiocarbamtes were crystallized and the molecular structures were determined. As the dispute over the presence of Mo with Zn‐dithiocarbamate existed, single crystal EPR measurement was performed. Interestingly the doublet EPR signals of 63Cu and 65Cu patterns were observed. Single crystals of Zn2(Et2dtc)4 containing approximately 2% of Cu2+ in the host lattice showed the doublet spectral characteristic of the Cu2+ ions (S = 1/2, I = 3/2). Both the molecular structures 1 and 2 were identical dimers. The cell parameters of the crystals were refined with low residual factor compared to those of the reported structures. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Al‐doped ZnO nanoparticle thin films were prepared on glass substrate at the optimum temperature of (410±10) °C by spray pyrolysis technique using zinc nitrate as a precursor solution and aluminium chloride as a dopant. The dopant concentration (Al/Zn at%) was varied from 0 to 2 at%. Structural analysis of the films shows that all the films are of polycrystalline zinc oxide in nature, possessing hexagonal wurtzite structure. The films exhibit variation in peak intensities corresponding to (100), (002) and (101) reflection planes on Al‐doping. The crystallite size calculated by Scherrer formula has been found to be in the range of 35‐65 nm. The optical absorption study shows that the optical band gap in the Al‐doped films varies in the range of 3.11 – 3.22 eV. The width of localized states in the band gap estimated by the Urbach tail analysis has been found to be minimum in case of the 1 at% Al‐doped zinc oxide thin film. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Two conformational isomers of [Zn (medpt)(NCS)2], medpt=bis(3‐aminopropyl) methylamine, (1) and (2) have been synthesised and the crystal structures are determined using single crystal X‐ray diffraction. The structures of the complexes have been solved by Patterson method and refined by full‐matrix least‐ squares techniques to R1 = 0.0524 for (1) and R1 = 0.0506 for (2), respectively. The geometry around the Zn(II) centre in both isomers is distorted trigonal bipyramidal. The two pendent thiocyanate moieties in (1), with Zn–N–C angles 167.9(4)–173.9(4)º, coordinate the mental centre almost linearly while the corresponding coordinations in (2) are significantly bent [Zn–N–C angles 150.8(3)–153.1(2)°]. Intermolecular N–H…S hydrogen bonds stabilise the crystal packing in the complexes forming infinite chains parallel to the [100] direction. The combinations of molecular chains generate three/two dimensional supramolecular framework in complexes (1) and (2). (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.

Abstract  

[Zn(H2O)6][{Zn(H2O)}2(ttha)]·4H2O (ttha = triethylenetetraamine-N,N,N′,N″,N‴,N‴-hexaacetate) has been structurally characterized (triclinic, P-1, a = 7.4014(4) ?, b = 8.5521(4) ?, c = 15.0309(7) ?, α = 73.582(1)°, β = 85.173(1)°, γ = 69.935(1)°; V = 857.15(7) ?3; Z = 1). The two Zn2+ ions bound by the [ttha]−6 ligand are in distorted octahedral environments. While there exists a center of symmetry in the [{Zn(H2O)}2(ttha)]2− anion in the crystalline state, 13C{1H} NMR spectroscopy demonstrates the absence of a center of symmetry in aqueous solution. Furthermore, electronic absorption spectroscopy reveals that [Zn(H2O)6][{Zn(H2O)}2(ttha)]·4H2O reacts with vanadyl(IV) acetate in aqueous solution at room temperature to yield [(VO)2(ttha)]2−. This reaction implies that Zn2+ can dissociate from [{Zn(H2O)}2(ttha)]2− in aqueous solution.  相似文献   

13.
The title compound, a nickel complex [C23H26N3O2Br2Ni.(ClO4)] (CCDC 199520) crystallizes in triclinic space group P with the cell parameters a = 10.2560(4), b = 10.8231(4), c = 12.0888(5)Å, α = 99.404(1), β = 99.780(1), γ = 92.252(1)° and V = 1301.49(9)Å3. The structure was solved by Patterson method and refined by full‐matrix least‐squares procedures to a final R = 0.0497 using 6287 observed reflections. In the complex, the piperidine ring takes chair conformation and the geometry around the Ni ion is slightly distorted square planar. The dihedral angle between the planes [N‐Ni‐N and O‐Ni‐O] is 9.4(1)°. The chelate ring containing both the nitrogen atoms adopts twisted boat conformation. The molecules in the crystal are stabilized by N‐H…O and C‐H…O types of hydrogen bonds in addition to a C‐H…π interaction. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Mg‐doped ZnO (MgxZn1‐xO) nanoparticles with precise stoichiometry are synthesized through polyacrylamide polymer method. Calcination of the polymer precursor at 650 °C gives particles of the homogeneous solid solution of the (MgxZn1‐xO) system in the composition range (x < 0.15). ZnO doping with Mg causes shrinkage of lattice parameter c. The synthesized MgxZn1‐xO nanoparticles are typically with the diameter of 70–85 nm. Blue shift of band gap with the Mg‐content is demonstrated, and photoluminescence (PL) from ZnO has been found to be tunable in a wide range from green to blue through Mg doping. The blue‐related PL therefore appeared to be caused by energetic shifts of the valence band and/or the conduction band of ZnO. MgxZn1‐xO nanoparticles synthesized by polyacrylamide‐gel method after modified by polyethylene glycol surfactant have a remarkable improvement of stability in the ethanol solvent, indicating that these MZO nanoparticles could be considered as the candidate for the application of solution–processed technologies for optoelectronics at ambient temperature conditions.  相似文献   

15.
We present a new complementary strategy to quasicrystalline structure determination: The local atomic structure of simple icosahedral (si) Ho11Mg15Zn74 [a(6D) = 5.144(3)Å in a sphere of up to r = 17Å was refined using the atomic pair distribution function (PDF) from in‐house X‐ray powder diffraction data (MoKα1, Qmax = 13.5Å−1; R = 20.4%). The basic building block is a 105‐atom Bergman‐Cluster {Ho8Mg12Zn85}. Its center is occupied by a Zn atom – in contrast to a void in face centred icosahedral (fci) Ho9Mg26Zn65. The center is then surrounded by another 12 Zn atoms, forming an icosahedron (1st shell). The 2nd shell is made up of 8 Ho atoms arranged on the vertices of a cube which in turn is completed to a pentagon dodecahedron by 12 Mg atoms, the dodecahedron then being capped by 12 Zn atoms. The 3rd shell is a distorted soccer ball of 60 Zn atoms, reflecting the higher Zn content of the si phase compared to the fci phase. In our model, 7% of all atoms are situated in between the clusters. The model corresponds to a hypothetical 1/1‐approximant of the icosahedral (i) phase. The local coordinations of the single atoms are of a much distorted Frank‐Kasper type and call to mind those present in 0/1‐Mg2Zn11. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
A new methoxy functionalized 2‐(trichloromethyl)‐1,3‐diarylimidazolidin (6) was synthesized as the precursor for N‐heterocyclic carbene complexes of Pd(II) and Rh(I) by the condensation of N,N'‐bis(2,4‐dimethoxyphenyl)‐1,2‐diaminoethane with chloral. The structures of all compounds have been elucidated by a combination of multinuclear NMR spectroscopy, elemental analysis and in one instance, by single crystal X‐ray diffraction. Compound 8, C27H34N2O4ClRh, crystallizes in the triclinic space group P‐1 with cell dimensions a = 9.7642(12)Å, b = 11.1914(11)Å, c = 13.0102(14)Å, α = 104.034(9)°, β = 106.658(9)°, γ = 99.658(9)° with Z = 2. The molecular structure of 8 shows the geometry around the Rh metal to be a slightly distorted square planar. The crystal structure shows the formation of centrosymmetric dimers via intermolecular C‐H...Cl hydrogen bonds. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The title compound [CCDC 199359], C16H20N5 crystallized in Monoclinic system with the space group C2/c. The unit cell parameters are: a = 16.554(6), b = 12.145(4), c = 16.221(5)Å and β = 102.67(1)°. The molecular structure is stabilized by an intramolecular C‐H…N type hydrogen bond and the molecular packing by the intermolecular C‐H…N and N‐H…N type hydrogen bonds. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
A new X-type polyester (4) containing nitrophenylazonitroresorcinoxy groups as NLO chromophores, which are components of the polymer backbone was prepared. Polyester 4 is soluble in common organic solvents such as N,N-dimethylformamide and dimethylsulfoxide. It shows a thermal stability up to 280°C from thermogravimetric analysis with glass-transition temperature (Tg) obtained from differential scanning calorimetry near 120°C. The second harmonic generation (SHG) coefficient (d33) of poled polymer films at the 1064 nm fundamental wavelength is around 5.08 × 10?9 esu. The dipole alignment exhibits a thermal stability even at 5°C higher than Tg, and no SHG decay was observed below 125°C due to the partial main-chain character of polymer structure, which is acceptable for NLO device applications.  相似文献   

19.
Different approaches to decreasing mechanical stresses developed in MoSi2/Si multilayers with increase of number of periods due to structural reconstruction in layers of amorphous silicon and nanocrystalline MoSi2 were studied by scattering CuKα X-ray radiation at small and large angles, cross-sectional electron microscopy and micrometry of substrate sag. It was shown that effective relaxation of mechanical stresses in MoSi2/Si multilayers is achieved by annealing them at ∼320 °C during 1 hour, or by deposition of layers at substrate temperature ∼320 °C, or by increasing sputtering gas pressure up to 7 × 10—3 Torr in case of argon. Optimal conditions for deposition of MoSi2/Si multilayers with periods N > 103 and high reflectivity of X-rays with wavelengths 12.4—20.0 nm are: substrate temperature Ts = 220 °C, argon pressure PAr = 3 × 10—3 Torr, layer deposition rate 1 nm/s.  相似文献   

20.
ZnO nanostructures composed of nanosheets have been synthesized by a facile low temperature reaction of Zn(OH)2 and NaOH without the aid of any organic molecular templates. The influences of the reaction parameters, such as the concentrations of Zn(NO3)2, reaction temperatures, and reaction time on the morphologies of ZnO have been investigated. The thickness of ZnO nanosheets can be adjusted from 10–20 nm to 30–40 nm by altering the reaction temperatures from 80 °C to 180 °C. ZnO nanosheets are single crystals and the growth direction is perpendicular to [1100]. A possible gradual nucleation – rapid growth formation mechanism of ZnO nanosheets is proposed. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号