首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The participation of hydrogen‐arsenate group (AsO3OH)2− in solid‐state compounds may serve as a model example for explaining and clarifying the behaviour of As and other elements during weathering processes in natural environment. The mineral geminite, a hydrated hydrogen‐arsenate mineral of ideal formula Cu(AsO3OH)·H2O, has been studied by Raman and infrared spectroscopies. Two samples of geminite of different origin were investigated and the spectra proved quite similar. In the Raman spectra of geminite, six bands are observed at 741, 812, 836, 851, 859 and 885 cm−1 (Salsigne, France), and 743, 813, 843, 853, 871 and 885 cm−1 (Jáchymov, Czech Republic). The band at 851/853 cm−1 is assigned to the ν1 (AsO3OH)2− symmetric stretching mode; the other bands are assigned to the ν3 (AsO3OH)2− split triply degenerate antisymmetric stretching mode. Raman bands at 309, 333, 345 and 364/310, 333 and 345 cm−1 are attributed to the ν2 (AsO3OH)2− bending mode, and a set of higher wavenumber bands (in the range 400–500 cm−1) is assigned to the ν4 (AsO3OH)2− split triply degenerate bending mode. A very complex set of overlapping bands is observed in both the Raman and infrared spectra. Raman bands are observed at 2289, 2433, 2737, 2855, 3235, 3377, 3449 and 3521/2288, 2438, 2814, 3152, 3314, 3448 and 3521 cm−1. Two Raman bands at 2289 and 2433/2288 and 2438 cm−1 are ascribed to the strong hydrogen bonded water molecules. The Raman bands at 3235, 3305 and 3377/3152 and 3314 cm−1 may be assigned to the ν OH stretching vibrations of water molecules. Two bands at 3449 and 3521/3448 and 3521 cm−1 are assigned to the OH stretching vibrations of the (AsO3OH)2− units. The lengths of the O H···O hydrogen bonds vary in the range 2.60–2.94 Å (Raman) and 2.61–3.07 Å (infrared). Two Raman and infrared bands in the region of the bending vibrations of the water molecules prove that structurally non‐equivalent water molecules are present in the crystal structure of geminite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The Raman spectrum of the mineral guilleminite Ba[(UO2)3O2(SeO3)2](H2O)3 was studied and complemented by the infrared spectrum of this mineral. Both spectra were interpreted and compared with the spectra of marthozite, larisaite, haynesite and piretite, all of which should have the same phosphuranylite anion sheet topology. The presence of symmetrically distinct water molecules and hydrogen bonds was inferred from the spectra. This is in agreement with the crystal structural analysis of guilleminite. U O bond lengths in uranyl and O H···O hydrogen bond lengths were calculated from the Raman and/or infrared spectra of guilleminite. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Raman spectra of pseudojohannite were studied and related to the structure of the mineral. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (SO4)2− units and of water molecules. The published formula of pseudojohannite is Cu6.5(UO2)8[O8](OH)5[(SO4)4]·25H2O. Raman bands at 805 and 810 cm−1 are assigned to (UO2)2+ stretching modes. The Raman bands at 1017 and 1100 cm−1 are assigned to the (SO4)2− symmetric and antisymmetric stretching vibrations. The three Raman bands at 423, 465 and 496 cm−1 are assigned to the (SO4)2−ν2 bending modes. The bands at 210 and 279 cm−1 are assigned to the doubly degenerate ν2 bending vibration of the (UO2)2+ units. U O bond lengths in uranyl and O H···O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The Raman spectrum of the uranyl selenite mineral demesmaekerite was studied, complemented by the infrared spectrum and tentatively interpreted. The observed bands were attributed to the stretching and bending vibrations of (UO2)2+, (SeO3)2− and OH groupings. U O bond lengths in uranyl and O H···O hydrogen bond lengths were calculated from Raman and/or infrared spectra and compared with published data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Raman spectra of jáchymovite, (UO2)8(SO4)(OH)14·13H2O, were studied, complemented with infrared spectra, and compared with published Raman and infrared spectra of uranopilite, [(UO2)6(SO4)O2(OH)6(H2O)6]·6H2O. Bands related to the stretching and bending vibrations of (UO2)2+, (SO4)2−, (OH) and water molecules were assigned. U O bond lengths in uranyl and O H· · ·O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Raman spectra of vajdakite, [(Mo6+O2)2(H2O)2As O5]·H2O, were studied and interpreted in terms of the structure of the mineral. The Raman spectra were compared with the published infrared spectrum of vajdakite. The presence of dimolybdenyl and diarsenite units and of hydrogen bonded water molecules was inferred from the Raman spectra which supported the known and published crystal structure of vajdakite. Mo O and O H···O bond lengths were calculated from the Raman spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Raman spectra of the uranyl oxyhydroxy‐hydrated mineral compreignacite, K2[(UO2)3O2(OH)3]2·7H2O, were measured and interpreted. Observed bands were attributed to the stretching and bending vibrations of uranyl units, molecular water and hydroxyl ions. U O bond lengths in uranyl and O HO hydrogen bond lengths were inferred from the spectra and compared with those from the X‐ray single crystal structure data. The importance of this spectroscopic study rests with the ability to analyze very small amounts of the mineral. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The minerals of the mixite group—zálesíite CaCu6[(AsO4)2(AsO3OH)(OH)6]·3H2O from abandoned uranium deposit Zálesí, Czech Republic and calciopetersite CaCu6[(PO4)2(PO3OH)(OH)6]·3H2O from a quarry near Domašov na Bystřicí, northern Moravia, Czech Republic—were studied by Raman and infrared spectroscopy. The observed bands were assigned to the stretching and bending vibrations of (AsO4)3− and (AsO3OH)2− ions in zálesíite, and (PO4)3− and (PO3OH)2− in calciopetersite, and to molecular water, hydroxyl ions, and Cu‐(O,OH) units in both minerals. O H···O hydrogen‐bond lengths in zálesíite and calciopetersite structures were calculated with Libowitzky's empirical relation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Raman and infrared spectra of the uranyl mineral zellerite, Ca[(UO2)(CO3)2(H2O)2]·3H2O, were measured and tentatively interpreted. U O bond in uranyl and O H···O hydrogen bonds were calculated from the vibrational spectra. The presence of structurally nonequivalent water molecules in the crystal structure of zellerite was inferred. A proposed chemical formula of zellerite is supported. Raman bands at 3514, 3375 and 2945 cm−1and broad infrared bands at 3513, 3396 and 3326 cm−1 are related to the ν OH stretching vibrations of hydrogen‐bonded water molecules. Observed wavenumbers of these vibrations prove that in fact hydrogen bonds participate in the crystal structure of zellerite. The presence of two bands at 1618 and 1681 cm−1 proves structurally distinct and nonequivalent water molecules in the crystal structure of zellerite. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Raman spectroscopy has been used to study the arsenate minerals haidingerite Ca(AsO3OH)·H2O and brassite Mg(AsO3OH)·4H2O. Intense Raman bands in the haidingerite spectrum observed at 745 and 855 cm−1 are assigned to the (AsO3OH)2−ν3 antisymmetric stretching and ν1 symmetric stretching vibrational modes. For brassite, two similarly assigned intense bands are found at 809 and 862 cm−1. The observation of multiple Raman bands in the (AsO3OH)2− stretching and bending regions suggests that the arsenate tetrahedrons in the crystal structures of both minerals studied are strongly distorted. Broad Raman bands observed at 2842 cm−1 for haidingerite and 3035 cm−1 for brassite indicate strong hydrogen bonding of water molecules in the structure of these minerals. OH···O hydrogen‐bond lengths were calculated from the Raman spectra based on empirical relations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Raman and infrared spectra of calcurmolite were recorded and interpreted from the uranium and molybdenum polyhedra, water molecules and hydroxyls point of view. U O bond lengths in uranyl and Mo O bond lengths in MoO6 octahedra were calculated and O H…O bond lengths were inferred from the spectra. The mineral calcurmolite is characterised by bands assigned to the vibrations of the UO2 units. These units provide intense Raman bands at 930, 900 and 868 and 823 cm−1. These bands are attributed to the anti‐symmetric and symmetric stretching modes of the UO2 units, respectively. Raman bands at 794, 700, 644, 378 and 354 cm−1 are attributed to vibrations of the MoO4 units. The bands at 693 and 668 cm−1 are assigned to the anti‐symmetric and symmetric Ag modes of the terminal MO2 units. Similar bands are observed at 797 and 773 cm−1 for koechlinite and 798 and 775 cm−1 for lindgrenite. It is probable that some of the bands in the low wavenumber region are attributable to the bending modes of MO2 units. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2· H2O, was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As‐OH units, as well as the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O H···O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2− units in the crystal structure of burgessite was proved, which is in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The molecular structure of the uranyl mineral rutherfordine has been investigated by the measurement of the near‐infrared (NIR) and Raman spectra and complemented with infrared spectra including their interpretation. The spectra of rutherfordine show the presence of both water and hydroxyl units in the structure as evidenced by IR bands at 3562 and 3465 cm−1 (OH) and 3343, 3185 and 2980 cm−1 (H2O). Raman spectra show the presence of four sharp bands at 3511, 3460, 3329 and 3151 cm−1. Corresponding molecular water bending vibrations were only observed in both Raman and infrared spectra of one of two studied rutherfordine samples. The second rutherfordine sample studied contained only hydroxyl ions in the equatorial uranyl plane and did not contain any molecular water. The infrared spectra of the (CO3)2− units in the antisymmetric stretching region show complexity with three sets of carbonate bands observed. This combined with the observation of multiple bands in the (CO3)2− bending region in both the Raman and IR spectra suggests that both monodentate and bidentate (CO3)2− units may be present in the structure. This cannot be exactly proved and inferred from the spectra; however, it is in accordance with the X‐ray crystallographic studies. Complexity is also observed in the IR spectra of (UO2)2+ antisymmetric stretching region and is attributed to non‐identical UO bonds. U O bond lengths were calculated using wavenumbers of the ν3 and ν1 (UO2)2+ and compared with data from X‐ray single crystal structure analysis of rutherfordine. Existence of solid solution having a general formula (UO2)(CO3)1−x(OH)2x.yH2O (x, y ≥ 0) is supported in the crystal structure of rutherfordine samples studied. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The mineral marthozite, a uranyl selenite, has been characterised by Raman spectroscopy at 298 K. The bands at 812 and 797 cm−1 were assigned to the symmetric stretching modes of the (UO2)2+ and (SeO3)2− units, respectively. These values gave the calculated U O bond lengths in uranyl of 1.799 and/or 1.814 Å. Average U O bond length in uranyl is 1.795 Å, inferred from the X‐ray single crystal structure analysis of marthozite by Cooper and Hawthorne. The broad band at 869 cm−1 was assigned to the ν3 antisymmetric stretching mode of the (UO2)2+ (calculated U O bond length 1.808 Å). The band at 739 cm−1 was attributed to the ν3 antisymmetric stretching vibration of the (SeO3)2− units. The ν4 and the ν2 vibrational modes of the (SeO3)2− units were observed at 424 and 473 cm−1. Bands observed at 257, and 199 and 139 cm−1 were assigned to OUO bending vibrations and lattice vibrations, respectively. O H···O hydrogen bond lengths were inferred using Libowiztky's empirical relation. The infrared spectrum of marthozite was studied for complementation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Raman spectroscopy has been used to study the rare‐earth mineral churchite‐(Y) of formula (Y,REE)(PO4) ·2H2O, where rare‐earth element (REE) is a rare‐earth element. The mineral contains yttrium and, depending on the locality, a range of rare‐earth metals. The Raman spectra of two churchite‐(Y) mineral samples from Jáchymov and Medvědín in the Czech Republic were compared with the Raman spectra of churchite‐(Y) downloaded from the RRUFF data base. The Raman spectra of churchite‐(Y) are characterized by an intense sharp band at 975 cm−1 assigned to the ν1 (PO43−) symmetric stretching mode. A lower intensity band observed at around 1065 cm−1 is attributed to the ν3 (PO43−) antisymmetric stretching mode. The (PO43−) bending modes are observed at 497 cm−12) and 563 cm−14). Some small differences in the band positions between the four churchite‐(Y) samples from four different localities were found. These differences may be ascribed to the different compositions of the churchite‐(Y) minerals. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Raman spectra of two well‐defined types of koritnigite crystals from the Jáchymov ore district, Czech Republic, were recorded and interpreted. No substantial differences were observed between both crystal types. The observed Raman bands were attributed to the (AsO3OH)2− stretching and bending vibrations as well as stretching and bending vibrations of water molecules and hydroxyl ions. The non‐interpreted Raman spectra of koritnigite from the RRUFF database and the published infrared spectra of cobaltkoritnigite were used for comparison. The O H···O hydrogen bond lengths in the crystal structure of koritnigite were inferred from the Raman spectra and compared with those derived from the X‐ray single‐crystal refinement. The presence of (AsO3OH)2− units in the crystal structure of koritnigite was proved from the Raman spectra, which supports the conclusions of the X‐ray structure analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The Raman spectrum of bukovskýite [Fe3+2(OH)(SO4)(AsO4)· 7H2O] has been studied and compared with that of an amorphous gel containing specifically Fe, As and S, which is understood to be an intermediate product in the formation of bukovskýite. The observed bands are assigned to the stretching and bending vibrations of (SO4)2− and (AsO4)3− units, stretching and bending vibrations and vibrational modes of hydrogen‐bonded water molecules, stretching and bending vibrations of hydrogen‐bonded (OH) ions and Fe3+ (O,OH) units. The approximate range of O H···O hydrogen bond lengths was inferred from the Raman spectra. Raman spectra of crystalline bukovskýite and of the amorphous gel differ in that the bukovskýite spectrum is more complex, the observed bands are sharp and the degenerate bands of (SO4)2− and (AsO4)3− are split and more intense. Lower wavenumbers of δ H2O bending vibrations in the spectrum of the amorphous gel may indicate the presence of weaker hydrogen bonds compared to those in bukovskýite. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The uranyl tellurite mineral moctezumite, Pb(UO2)(TeO3)2, was studied by Raman spectroscopy and complemented with infrared spectroscopy. The presence of the stretching and bending vibrations of uranyl (UO2)2+ and tellurite (TeO3)2− ions was inferred, and the observed bands were assigned to uranyl and tellurite units vibrations. U O bond lengths calculated from the spectra with two empirical relations are close to those inferred from the X‐ray single‐crystal structure of moctezumite. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The mixed anion mineral parnauite Cu9[(OH)10|SO4|(AsO4)2]·7H2O has been studied by Raman spectroscopy. Characteristic bands associated with arsenate, sulphate and hydroxyl units are identified. Broad bands are observed and are resolved into component bands. Two intense bands at 859 and 830 cm−1 are assigned to the ν1 (AsO4)3− symmetric stretching and ν3 (AsO4)3− antisymmetric stretching modes. The comparatively sharp band at 976 cm−1 is assigned to the ν1 (SO4)2− symmetric stretching mode and a broad‐spectral profile centered upon 1097 cm−1 is attributed to the ν3 (SO4)2− antisymmetric stretching mode. A comparison of the Raman spectra is made with other arsenate‐bearing minerals such as carminite, clinotyrolite, kankite, tilasite and pharmacosiderite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号