首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cathinones belong to a group of compounds of great interest in the new psychoactive substances (NPS) market. Constant changes to the chemical structure made by the producers of these compounds require a quick reaction from analytical laboratories in ascertaining their characteristics. In this article, three cathinone derivatives were characterized by X-ray crystallography. The investigated compounds were confirmed as: 1-[1-(4-methylphenyl)-1-oxohexan-2-yl]pyrrolidin-1-ium chloride ( 1 , C17H26NO+·Cl?, the hydrochloride of 4-MPHP), 1-(4-methyl-1-oxo-1-phenylpentan-2-yl)pyrrolidin-1-ium chloride ( 2 ; C16H24NO+·Cl?, the hydrochloride of α-PiHP) and methyl[1-(4-methylphenyl)-1-oxopentan-2-yl]azanium chloride ( 3 ; C13H20NO+·Cl?, the hydrochloride of 4-MPD). All the salts crystallize in a monoclinic space group: 1 and 2 in P21/c, and 3 in P21/n. To the best of our knowledge, this study provides the first detailed and comprehensive crystallographic data on salts 1 – 3 .  相似文献   

2.
The spiroborate anion, namely, 2,3,7,8‐tetracarboxamido‐1,4,6,9‐tetraoxa‐5λ4‐boraspiro[4.4]nonane, [B(TarNH2)2]?, derived from the diol l ‐tartramide TarNH2, [CH(O)(CONH2)]2, shows a novel self‐assembly into two‐dimensional (2D) layer structures in its salts with alkylammonium cations, [NR4]+ (R = Et, Pr and Bu), and sparteinium, [HSpa]+, in which the cations and anions are segregated. The structures of four such salts are reported, namely, the tetrapropylazanium salt, C12H28N+·C8H12BN4O8?, the tetraethylazanium salt hydrate, C8H20N+·C8H12BN4O8?·6.375H2O, the tetrabutylazanium salt as the ethanol monosolvate hemihydrate, C16H36N+·C8H12BN4O8?·C2H5OH·0.5H2O, and the sparteinium (7‐aza‐15‐azoniatetracyclo[7.7.1.02,7.010,15]heptadecane) salt as the ethanol monosolvate, C15H27N2+·C8H12BN4O8?·C2H5OH. The 2D anion layers have preserved intermolecular hydrogen bonding between the amide groups and a typical metric repeat of around 10 × 15 Å. The constraint of matching the interfacial area organizes the cations into quite different solvated arrangements, i.e. the [NEt4] salt is highly hydrated with around 6.5H2O per cation, the [NPr4] salt apparently has a good metric match to the anion layer and is unsolvated, whilst the [NBu4] salt is intermediate and has EtOH and H2O in its cation layer, which is similar to the arrangement for the chiral [HSpa]+ cation. This family of salts shows highly organized chiral space and offers potential for the resolution of both chiral cations and neutral chiral solvent molecules.  相似文献   

3.
Acidic Sulfates of Neodymium: Synthesis and Crystal Structure of (H5O2)(H3O)2Nd(SO4)3 and (H3O)2Nd(HSO4)3SO4 Light violett single crystals of (H5O2)(H3O)2 · Nd(SO4)3 are obtained by cooling of a solution prepared by dissolving neodymium oxalate in sulfuric acid (80%). According to X‐ray single crystal investigations there are H3O+ ions and H5O2+ ions present in the monoclinic structure (P21/n, Z = 4, a = 1159.9(4), b = 710.9(3), c = 1594.7(6) pm, β = 96.75(4)°, Rall = 0.0260). Nd3+ is nine‐coordinate by oxygen atoms. The same coordination number is found for Nd3+ in the crystal structure of (H3O)2Nd(HSO4)3SO4 (triclinic, P1, Z = 2, a = 910.0(1), b = 940.3(1), c = 952.6(1) pm, α = 100.14(1)°, β = 112.35(1)°, γ = 105.01(1)°, Rall = 0.0283). The compound has been prepared by the reaction of Nd2O3 with chlorosulfonic acid in the presence of air. In the crystal structure both sulfate and hydrogensulfate groups occur. In both compounds pronounced hydrogen bonding is observed.  相似文献   

4.
From extraction experiments and $ \gamma $ -activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + NaL+ (nb) ? ML+ (nb) + Na+ (aq) taking place in the two–phase water–nitrobenzene system (M+= Li+, H3O+, NH4 +; L = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the ML+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: H3O+ < Li+ < NH4 +.  相似文献   

5.
The kinetics of Ruthenium(III) chloride mediated oxidation of acetone, 2-butanone, 4-methyl-2-pentanone, 2-pentanone, cyclopentanone, and cyclohexanone by sodium periodate in aqueous HClO4 media was zero-order in [IO4] and first-order in [ketone]. The reaction was independent of added [Ru(III)] and showed first-order dependence on [H+] for all the ketones studied, except acetone. In the case of acetone at [H+] < 0.05 M, the rate was independent of [H+], the order in [Ru(III)] being unity; but at [H+] > 0.05 M the reaction showed unit dependence on [H+] and the order in [Ru(III)] was zero. Ruthenium(VIII) generated in situ is postulated as the hydride abstracting species. A mechanism involving enolization as the rate determining step is proposed. Acetone at lower acidity of the medium is shown to react directly with Ru(VIII). In the absence of ruthenium(III) chloride, the kinetics were first-order in [IO4], [ketone], and [H+]. Structure-reactivity relationship is discussed and thermodynamic parameters are reported. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
The water exchange reactions in aquated Li+ and Be2+ ions were investigated with density functional theory calculations performed using the [Li(H2O)4]+·14H2O and [Be(H2O)4]2+·8H2O systems and a cluster‐continuum approach. A range of commonly used functionals predict water exchange rates several orders of magnitude lower than the experimental ones. This effect is attributed to the overstabilization of coordination number four by these functionals with respect to the five‐coordinated transition states responsible for the associative ( A ) or associative interchange ( Ia ) water exchange mechanisms. However, the M06 and M062X functionals provide results in good agreement with the experimental data: M062X/TZVP calculations yield a concerted Ia mechanism for the water exchange in [Be(H2O)4]2+·8H2O that gives an average residence time of water molecules in the first coordination sphere of 260 μs. For [Li(H2O)4]+·14H2O the water exchange reaction is predicted to follow an A mechanism with a residence time of inner‐sphere water molecules of 25 ps.  相似文献   

7.
The reaction between (NH4)[MoBr5 · H2O] and pyridine in acetonitrile (CH3CN) at room temperature results in the mixture of cis- and trans-(pyH)[MoBr4py2] which can be separated on the basis of solubility. cis-M[MoBr4py2] · ? H2O (M = NH4+, Rb+, Cs+), cis-(bipyH)[MoBr4py2] (bipy = 2,2′-bipyridil) and cis-(PPh4)[MoBr4py2], were prepared from cis-(pyH)[MoBr4py2]. At the temperature of boiling acetonitrile irreversible cis to trans isomerisation takes place. Bromine oxydizes cis isomers at room temperature to trans-MoBr4py2. The compounds were characterised by chemical analysis, infrared, UV-VIS spectroscopy, conductivity measurements and powder diffraction. The crystal structure of cis-(NH4)[MoBr4py2] · ? H2O has been determined: rhombohedral, R3c, (No. 161), a = 15.809(3) Å, β = 112.79(2)°, Z = 6, DC = 2.29, DO = 2.27(3) g/cm3, V = 2 601(1) Å3, R1 = 0.046, Rw = 0.068. Average Mo? Br and Mo? N(pyridine) distances within the anion are 2.58(2) and 2.20(2) Å. cis-Rb[MoBr4py2] · ? H2O and cis-Cs[MoBr4py2] · ? H2O are isostructural with cis-(NH4)[MoBr4py2] · ? H2O.  相似文献   

8.
(1,5-Cyclooctadiene) (4-substituted pyridinium 2-pyridylcarbonylmethylide)- rhodium(I) perchlorates, [Rh(COD)(C5H4NC(O)C?H+C5H4X-4)]ClO4 [COD = 1,5-cyclooctadiene; X = CH3C(O), CH3OC(O), C6H5, CH3, and H], have been prepared. They are shown to have the geometry with coordination by the pyridyl nitrogen and carbonyl oxygen atoms of the ylide ligands and to exhibit intramolecular rearrangement of coordinated COD in chloroform, methanol, and dimethyl sulphoxide based on IR and 1H NMR spectroscopies. Although the ylides have exhibited fluorescence bands due to an intramolecular charge-transfer transition and phosphorescence bands due to a carbonyl 3(n*) transition, the complexes have given emission bands due to the metal-to-ylide ligand charge-transfer transition. A.single crystal X-ray crystal structure has been determined for [Rh(COD)(C5H4NC(O)C?H+C5H4CH3-4)]ClO4. The crystals are monoclinic, space group P21/n with cell dimensions a = 14.887(3), b = 20.274(4), c = 6.966(1) Å, β = 96.13(1)°, and Z = 4. The structure has been refined by a block-diagonal least-squares method to final R = 0.060 for 2997 independent reflections with |Fo| > 3σ(F). The ylide carbon-pyridinium nitrogen bond distance is 1.420(10) Å. The bonded distances from rhodium to the midpoints of the double bonds of COD are 1.982(11) and 2.014(12) Å.  相似文献   

9.
采用低温固相法和水热法制备MZn2HPO4PO4 (M=Na+, K+) 并用XRD, FT-IR, TG and SEM对其进行表征,用等温量热计测定热化学性质。按照Hess’s定律,设计一新的热化学循环。结果表明,所合成的物质是等结构三斜晶系的目标产物,具有片层结构,分解温度分别为: 415 ℃和430 ℃。从测定的溶解焓和其他的标准热化学数据,计算出MZn2HPO4PO4 (M=Na+, K+) 的标准摩尔生成焓分别为:ΔfHm [NaZn2HPO4PO4, s]=-3042.38±0.31 kJ·mol-1; ΔfHm [KZn2HPO4PO4,s]=-3093.46 ±0.27 kJ·mol-1。  相似文献   

10.
Single crystals of potassium iron hydrogen phosphate, KFe3(HPO4)2(H2PO4)6 · 4 H2O, were prepared hydrothermally by heating a mixture of Fe2O3, H3PO4 and K2CO3 with a small amount of water. It crystallizes monoclinic, space group C2/c (N° 15 Int. Tab.) with Z = 4 and a = 1701(2), b = 960.4(5), c = 1750(1) pm, β = 90.88(7)°. The crystal structure was solved by using 1716 unique reflections F0 > 4σ(F0) with a final wR2 value of 0.126 (SHELXL-93). The main feature of the crystal structure are layers formed by PO4-tetrahedra around the FeO6-octahedra parallel to (001). K+ and H2O molecules connect these layers. Effective Coordination Numbers (ECoN), Mean Fictive Ionic Radii (MEFIR), Charge Distribution (CHARDI) and the Madelung Part of Lattice Energy (MAPLE) are calculated for the title compound. The existence of hydrogen bonds is confirmed by these calculations.  相似文献   

11.
The kinetics of oxidation of Fe2+ by [Co(C3H2O4)3]3? in acidic solutions at 605 nm showed a simple first-order dependence in each reactant concentration. The second-order rate constant dependence on [H+] is in accordance with eqn (i) k2 = k′2 + k3[H+] (i) where k′2 and k3 have values of 73.4 ± 14.0 M ?1 s?1 and 353 ± 41 M?2 s?1, respectively, at 1.0 M ionic strength (NaClO4) and 25°C. At 310 nm the formation and decomposition of an intermediate, believed to be [FeC3H2O4]+, was observed. The increase in the rate of oxidation with increasing [H+] was interpreted in terms of a “one-ended” dissociation mechanism which facilitates chelation of Fe2+ by the carbonyl oxygens of malonate in the transition state.  相似文献   

12.
The protonation constants of the anions of thirteen polyaminocarboxylic acids have been determined in solutions containing different inert salts: KNO3, NaClO4 and N(CH3)4Cl. The formation constants of the following species: H5EDTA+, H6EDTA2+, H5CDTA+ and H4NTA+ have been obtained from solubility measurements with ethylenediamine tetraacetic acid (H4EDTA), 1,2-diaminocyclohexane tetraacetic acid (H4CDTA) and nitrilotriacetic acid (H3NTA) in acid solutions between pH = 3 and 0 at ionic strength 1M (NaClO4 + HClO4).  相似文献   

13.
Characterization of Distortional Isomers of the Anions Pentacyano-oxo-molybdate(IV) and of Tetracyano-aqua-oxo-molybdate(IV) in the Solid State. Crystal Structures of [(C6H5)4P]3[MoO(CN)5] · 7 H2O (green), [(C6H5)4As]2[MoO(OH2)(CN)4] · 4 H2O (blue), and [(C6H5)4P]2[MoO(OH2) (CN)4] · 4 H2O (green) Preparation of a series of salts containing the new pentacyano-oxo-molybdate(IV) anion is described: Cs2H[MoO(CN)5] (blue), [(CH3)4N]2H[MoO(CN)5] · 2 H2O (blue) and [Cr(en)3] [MoO(CN)5] · 4 H2O (green). The green [(C6H5)4P]3[MoO(CN)5] · 7 H2O crystallizes triclinic in the space group P1 . The molybdenum(IV) center is in an pseudo-octahedral environment of a terminal oxo-group (d(Mo?O); 1.705(4) Å), a CN? group in the trans-position (d(Mo? C): 2.373(6) Å), and four equatorial CN? groups (averaged d(Mo? C): 2.178 (Å). The blue and green salts exhibit v(Mo?O) stretching frequencies at 948 cm?1 and 920 cm?1, respectively. Blue and green salts containing the [MoO(OH2)(CN)4]2? anion and [(C6H5)4P]+ or [(C6H5)4As]+ cations have been prepared and characterized by single crystal crystallography. [(C6H5)4P]2[MoO(OH2)(CN)4] · 4 H2O (green) and [(C6H5)4As]2[MoO(OH2)(CN)4] · 4 H2O (blue) crystallize monoclinic in the space group C—P21/n. They are considered to be distortional isomers of the complex anion: the green species has a Mo?O bond distance of 1.72(2) Å whereas for the blue species d(Mo?O) = 1.60(2) Å is found; the corresponding v(Mo?O) frequencies are at 920 cm?1 and 980 cm?1.  相似文献   

14.
In 3‐methyl­thio‐4‐(propargyl­thio)­quinolinium chloride monohydrate, C13H12NS2+·Cl?·H2O, and 3‐methyl­thio‐4‐(propargyl­thio)­quinolinium tri­chloro­acetate, C13H12­NS2+·­C2Cl3O2?, the terminal alkyne group forms C[triple‐bond]C—H?O hydrogen bonds of favourable geometry. The conformation of the flexible propargyl­thio group is different in the two structures.  相似文献   

15.
Crystal Structures of Acid Hydrates and Oxonium Salts. XX. Oxonium Tetrafluoroborates H3OBF4, [H5O2]BF4, and [H(CH3OH)2]BF4 The crystal structures of three oxonium tetrafluoroborates were determined. H3OBF4, oxonium tetrafluoroborate proper, is triclinic with space group P1 , Z = 2 and the unit cell dimensions a = 4.758, b = 6.047, c = 6.352 Å and α = 80.40, β = 79.48, γ = 88.25° at ?26°C. Cations H3O+ and anions BF4? are linked by hydrogen bonds O? H…?F into ribbons of condensed rings. In [H5O2]BF4 (diaquohydrogen tetrafluoroborate, monoclinic, P21/c, Z = 4, a = 6.584, b = 9.725, c = 7.084 Å, β = 95.15° at ?100°C) the hydrogen bond in the cation H5O2+ is 2.412 Å short, asymmetric and approximately centered and the linking of cations and anions three-dimensional. In [H(CH3OH)2]BF4 (Bis(methanol)hydrogen tetrafluoroborate, monoclinic, P21/c, Z = 4, a = 5.197, b = 14.458, c = 9.318 Å, β = 94.61° at ?50°C) the cation [H(CH3OH)2]+ is characterized for the first time in a crystal structure with an again very short (2.394 Å), asymmetric and effectively centered hydrogen bond. By further hydrogen bonds cations and anions form only dimers of the formula unit of centrosymmetric cyclic structure.  相似文献   

16.
Synthesis and Crystal Structure of K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4), and Na(HSO4)(H3PO4) Mixed hydrogen sulfate phosphates K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) and Na(HSO4)(H3PO4) were synthesized and characterized by X‐ray single crystal analysis. In case of K2(HSO4)(H2PO4) neutron powder diffraction was used additionally. For this compound an unknown supercell was found. According to X‐ray crystal structure analysis, the compounds have the following crystal data: K2(HSO4)(H2PO4) (T = 298 K), monoclinic, space group P 21/c, a = 11.150(4) Å, b = 7.371(2) Å, c = 9.436(3) Å, β = 92.29(3)°, V = 774.9(4) Å3, Z = 4, R1 = 0.039; K4(HSO4)3(H2PO4) (T = 298 K), triclinic, space group P 1, a = 7.217(8) Å, b = 7.521(9) Å, c = 7.574(8) Å, α = 71.52(1)°, β = 88.28(1)°, γ = 86.20(1)°, V = 389.1(8)Å3, Z = 1, R1 = 0.031; Na(HSO4)(H3PO4) (T = 298 K), monoclinic, space group P 21, a = 5.449(1) Å, b = 6.832(1) Å, c = 8.718(2) Å, β = 95.88(3)°, V = 322.8(1) Å3, Z = 2, R1 = 0,032. The metal atoms are coordinated by 8 or 9 oxygen atoms. The structure of K2(HSO4)(H2PO4) is characterized by hydrogen bonded chains of mixed HnS/PO4 tetrahedra. In the structure of K4(HSO4)3(H2PO4), there are dimers of HnS/PO4 tetrahedra, which are further connected to chains. Additional HSO4 tetrahedra are linked to these chains. In the structure of Na(HSO4)(H3PO4) the HSO4 tetrahedra and H3PO4 molecules form layers by hydrogen bonds.  相似文献   

17.
The novel polyoxothioanion [Mo4S4O4(OH)2(OH2)3pba]2? where pba4? ligand is the 1,3-propylenebis(oxamate), was prepared by reacting Mo12S12O12(OH)12(OH2)6 ring with [Cu-pba]2? in aqueous medium. NaK[Mo4O4(μ-S)4(μ-OH)2(μ-H2O)(H2O)2(pba)] ·7H2O was isolated in the solid state and fully characterized by X-ray diffraction study (tetragonal, P4(2)/m [a=20.4962(4) Å; b=20.4962(4) Å; c=14.7013(5) Å). The molecular structure consists of an arc cycle shape tetranuclear enchainment {Mo4S4O4(OH)2 (OH2)3} closed by a pba4? ligand. The 3-D packing, resulting from the connection between K+ and Na+ and the coordination complex {Mo4-pba]2? is described. The 1H-NMR characterization of the complex in aqueous solution is given. The 1H-NMR spectrum exhibits four signals assigned to four enantiotopic protons of the alkyl chain of the pba4? ligand and is in agreement with crystal structure of the complex [Mo4-pba]2?. The compound was also characterized by infrared spectroscopy.  相似文献   

18.
Antimony(III) complexes with nitrogen-containing ligands: 2SbF3·Gly, SbF3·Gly, SbF3·2NA, SbFO·Gly, MSb2F7 (M=Et2NH2, Bu4N, HNA+), MSbF4 (M=Et2NH2, Pr2NH2, Bu4N, HNA+, HGly+), M2SbF5 (M=Et2NH2 and Pr2NH2), where Gly is glycine (+NH3CH2COO) and NA is nicotinamide (β-C5H4NCONH2), were studied by121,123Sb NQR spectroscopy at 77 K. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2232–2236, November, 1998.  相似文献   

19.
Mono- and Dinuclear Fluoro Complexes of Titanium (III), Chromium (III), and Iron(III). Syntheses and Structures of (NMe4) (Ti(H2O)4F2)TiF6 · H2O, (NMe4)3Cr2F9, and (NMe4)3Fe2F9 The title compounds have been prepared by reaction of MCl3 (M = Ti, Cr, Fe) with NMe4F in dimethylformamide. (NMe4)3Cr2F9 and (NMe4)3Fe2F9 contain the face-sharing biocathedral M2F93? unit. The M…M distances are 277.1(1) and 289.8(3) pm in (NMe4)3Cr2F9 and (NMe4)Fe2F9, respectively. (NMe4)(Ti(H2O)4F2)TiF6 · H2O contains trans-TiIII(H2O)4F2+ cations and TiIVF62? anions. Crystal data: (NMe4)3Cr2F9: hexagonal, space group P63/m, a = 804.1(3), c = 1857.5(4) pm, Z = 2, 529 reflections, R = 0.049; (NMe4)3Fe2F9: hexagonal, space group P63/m, a = 804.7(5), c = 1 861.6(5) pm, Z = 2, 635 reflections, R = 0,046; (NMe4)(Ti(H2O)4F2)TiF6 · H2O: orthorhombic, space group Pbca, a = 776.9(2), b = 1 616.3(3), c = 2 428.6(7) pm, Z = 8, 2 784 reflections, R = 0,056.  相似文献   

20.
The synthesis, structure, and physical properties of ionic liquids (IL) bearing the novel [Al(O–C6H4–CN)4] ion as counterion to the commonly used [NR4]+, [PR4]+ and imidazolium ions are reported. Both the influence of the alkyl chain length as well as the functionalization with cyano groups is studied. These ILs are easily obtained by reaction of Ag[Al(O–C6H4–CN)4] with the corresponding ammonium, phosphonium, and imidazolium halides. The stability towards electrophilic cations was investigated. All prepared salts have a window for the liquid phase of ca. 200 °C and are thermally stable up to 450 °C. The solid‐state structures reveal only weak cation ··· anion and anion ··· anion interactions in accord with the observed low melting points (glass transition points).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号