首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The line shapes of the polarized and depolarized Raman bands of the CO stretching of acetone, as well as the infrared band, are analyzed on the basis of the vibrational coupling model. The analytical procedures are described in detail. Satisfactory agreement between the observed and simulated spectra is obtained using almost the same coupling scheme for the three types of spectra. The orientational correlation between the coupled oscillators is discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Recent spectroscopic investigations of various amino acids report intriguing high‐pressure and low‐temperature behavior of NH3+ groups and their influence on various hydrogen bonds in the system. In particular, the variation of the intensity of NH3+ torsional mode at different temperatures and pressures has received much attention. We report here the first in situ Raman investigations of fully deuterated α‐glycine up to ∼20 GPa. The discontinuous changes in COO and ND3+ modes across ∼3 GPa indicate subtle structural rearrangements in fully deuterated α‐glycine. The decrease in the intensity of ND3+ torsional mode is found to be similar to that of undeuterated α‐glycine. The pressure‐induced stiffening of N D and CD2 stretching modes are discussed in the context of changes in the hydrogen‐bonding interactions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Resonant with the CS ππ* electronic transition, the intensity of CS stretching and its overtone have been greatly enhanced in the 488‐ and 319‐nm excited resonance Raman spectra. The isotropic and anisotropic parts of the Raman spectra of CS stretching modes of ethylene trithiocarbonate (ET) at different concentrations have been analyzed in order to study the noncoincidence effect (NCE). In neat ET, the experimentally measured values of noncoincidence Δυnc are ~4.60 cm1 for the CS stretching modes, which reduce to 1.30 cm1 at the mole fraction χm (ET) = 0.13. Both the isotropic and anisotropic peak frequencies of CS stretching were found to shift to higher wavenumber when the concentrations are diluted, while the value of Δυnc goes on decreasing upon dilution. The absolute Raman cross section of carbonyl stretching was also measured, and their behavior was unusual (first increasing and then decreasing with the decrease of concentration). The experimental result shows that there may exist self‐association in the high concentration, and the main NCE mechanism may be due to the transition dipole–transition dipole coupling between the ET molecules. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The time‐dependent density functional theory method was performed to investigate the excited‐state hydrogen‐bonding dynamics of N‐(2‐hydroxyethyl)‐1,8‐naphthalimide (2a) and N‐(3‐hydroxyethyl)‐1,8‐naphthalimide (3a) in methanol (meoh) solution. The ground and excited‐state geometry optimizations, electronic excitation energies, and corresponding oscillation strengths of the low‐lying electronically excited states for the complexes 2a + 2meoh and 3a + 2meoh as well as their monomers 2a and 3a were calculated by density functional theory and time‐dependent density functional theory methods, respectively. We demonstrated that the three intermolecular hydrogen bonds of 2a + 2meoh and 3a + 2meoh are strengthened after excitation to the S1 state, and thus induce electronic spectral redshift. Moreover, the electronic excitation energies of the hydrogen‐bonded complexes in S1 state are correspondingly decreased compared with those of their corresponding monomer 2a and 3a. In addition, the intramolecular charge transfer of the S1 state for complexes 2a + 2meoh and 3a + 2meoh were theoretically investigated by analysis of molecular orbital. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The isotropic and anisotropic parts of the Raman spectra of NH2 bending and ν(CO) stretching modes of HCONH2 in a hydrogen‐bonding solvent, methanol, at different concentrations have been analyzed carefully in order to study the noncoincidence effect (NCE). In neat HCONH2, the experimentally measured values of noncoincidence Δνnc are ∼11 and ∼18 cm−1 for the NH2 bending and ν(CO) stretching modes, which reduce to 0.45 and 1.14 cm−1, respectively at the concentration of HCONH2 in mole fraction, χm = 0.1. The experimental results have been explained on the basis of two models, namely, the microscopic prediction of Logan and the macroscopic model of Mirone and Fini. The relative success of the two models in explaining the experimental data for both the modes have been discussed. It has been observed that in case of the ν(CO) stretching vibrational mode the Logan model can reproduce the experimental data rather precisely, whereas in the case of the NH2 bending mode, Mirone and Fini model yields more accurate results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Probing and controlling the configurations and mechanical motions of the azobenzenes adsorbed on the metal substrates are preliminary for their applicability in various functional devices. In this work, we presented a detailed investigation of Raman properties of the dimercaptoazobenzene (DMAB) bound to gold nanoclusters using density functional calculations. It is demonstrated that the spectral features of the trans conformation of DMAB are quite different from the cis conformation, and the Raman intensities of the trans‐DMAB are much larger. Magnitude of chemical enhancement for the adsorbed trans‐DMAB is found to be close to or less than that for the adsorbed cis‐DMAB for the molecule–cluster complexes. This change trend can be, to a large extent, governed by the energy difference between the highest occupied energy level of the molecule and the lowest unoccupied energy level of the gold. Moreover, it is further demonstrated that differences in Raman intensities of the two conformations can be amplified for the cluster–molecular–cluster junctions, and thus chemical enhancement is much larger for the trans conformation than the cis conformation, possibly facilitating the experimental identification of the trans/cis DMAB. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The solute–solvent interaction of salts has a striking impact on various biological and industrial processes but its mechanism remains yet mysterious despite intensive studies since 1888 when Franz Hofmeister established the salt series. A combination of confocal Raman spectroscopy and contact angle measurements has enabled us to resolve the hydrogen bond relaxation (O:H―O, HB) and the associated charge polarization dynamics at different molecular site because of alkali halides hydration. Results show consistently that salt hydration softens the O:H phonon but stiffens H―O phonon cooperatively. The extent of HB relaxation and polarization is proportional to the electronegativity difference and ionic radius, following the order of Hofmeister series: X (R/η) = I (2.2/2.5) > Br (1.96/2.8) > Cl (1.81/3.0) > F (1.33/4.0) ≈ 0 for anions, and Y(R/η) = Na (0.98/0.9) > K (1.33/0.8) > Rb (1.49/0.8) > Cs (1.65/0.8) for cations. Observations suggest that ions create each an electric field that aligns, stretches, and polarizes water molecules, which relaxes the O:H―O bond cooperatively, depresses the molecular dynamics, and enhances the hydration shell viscosity and the skin stress. Exercises also demonstrate that Raman spectroscopy performs as a powerful tool for probing the molecular‐site‐resolved HB network relaxation dynamics in terms of phonon stiffness, molecular fluctuation dynamics, and phonon abundance transition under external stimulus. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
High‐resolution Raman spectra of pyrimidine (PD) and formamide (FA) mixtures with different compositions recorded in the ring breathing region of PD (ν1 ∼ 991 cm−1) are presented. The dilution of PD with FA leads to the appearance of a new band at ν1′ ∼ 994 cm−1, which is assigned to hydrogen‐bonded PD:FA species. From a quantitative analysis of the concentration‐dependent Raman spectra, the average number of FA molecules in the first solvation sphere of PD is determined as being equal to 2. This value is supported by density functional theory (DFT) calculations: a symmetric 1:2 complex is the most stable species among various hydrogen‐bonded PD:FA clusters with stoichiometries ranging from 1:1 to 1:4. A qualitative explanation for the blue shift of the ν1 mode upon complexation is given. Additionally, we have observed not only similarities but also some differences with respect to the PD:water system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Polarized Raman spectra of single crystals of the α‐polymorphs of protonated and deuterated oxalic acid dihydrate were recorded. The interpretation of the spectra is assisted by periodic DFT calculations using the CRYSTAL06 program and by comparison with the infrared spectra of the polycrystalline material. The agreement between the calculated and observed band wavenumbers is fair in the case of low‐anharmonicity modes, but marked differences appear for the stretching modes that are strongly anharmonic. A very broad feature, extending between ∼2000 and 1200 cm−1, is attributed to OH stretching. Notable is the topping of this feature by distinct bands that can be attributed to CO stretching, H2O scissoring and COH bending coupled to C O stretching. The assignments are supported by isotope effects. However, deuteration does not notably affect the wavenumber limits of the broad OH stretching band, which suggests that the potential governing the proton dynamics is of the asymmetric double‐minimum type with a very low barrier. The calculated normal coordinates show a strong participation of the bending modes of water molecules in almost all internal acid motions, as well as in the external phonons. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This paper reports that vibrational spectroscopic analysis on hydrogen-bonding between acetone and water comprises both experimental Raman spectra and ab initio calculations on structures of various acetone/water complexes with changing water concentrations. The optimised geometries and wavenumbers of the neat acetone molecule and its complexes are calculated by using ab initio method at the MP2 level with 6-311+G(d,p) basis set. Changes in wavenumber position and linewidth (fullwidth at half maximum) have been explained for neat as well as binary mixtures with different mole fractions of the reference system, acetone, in terms of intermolecular hydrogen bonding. The combination of experimental Raman data with ab initio calculation leads to a better knowledge of the concentration dependent changes in the spectral features in terms of hydrogen bonding.  相似文献   

11.
A concentration‐dependent Raman study of the ν(C Br) stretching and trigonal bending modes of 2‐ and 3‐Br‐pyridine (2Br‐p and 3Br‐p) in CH3OH was performed at different mole fractions of the reference molecule, 2Br‐p/3Br‐p, from 0.1 to 0.9 in order to understand the origin of blue/red wavenumber shifts of the vibrational modes due to hydrogen‐bond formation. The appearance of additional Raman bands in these binary systems at ∼617 cm−1in the case of 2Br‐p and at ∼618 cm−1 in the case of 3Br‐p compared to neat bromopyridine derivatives were attributed to specific hydrogen‐bonded complexes formed in the mixtures. The interpretation of experimental results is supported by density functional calculations on optimized geometries and vibrational wavenumbers of 2Br‐p and 3Br‐p and a series of hydrogen‐bonded complexes with methanol. The parameters obtained from these calculations were used for a qualitative explanation of the blue/red shifts. The wavenumber shifts and linewidth changes for the ν(C Br) stretching and trigonal bending modes as a function of concentration reveal that the caging effects leading to motional narrowing and diffusion‐causing line broadening are simultaneously operative, in addition to the blue shift caused due to hydrogen bonding. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
In this present work, using density functional theory and time‐dependent density functional theory methods, we theoretically study the excited‐state hydrogen bonding dynamics and the excited state intramolecular proton transfer mechanism of a new 2‐phenanthro[9,10‐d]oxazol‐2‐yl‐phenol (2PYP) system. Via exploring the reduced density gradient versus sign(λ2(r))ρ(r), we affirm that the intramolecular hydrogen bond O1‐H2?N3 is formed in the ground state. Based on photoexcitation, comparing bond lengths, bond angles, and infrared vibrational spectra involved in hydrogen bond, we confirm that the hydrogen bond O1‐H2?N3 of 2PYP should be strengthened in the S1 state. Analyses about frontier molecular orbitals prove that charge redistribution of 2PYP facilitates excited state intramolecular proton transfer process. Via constructing potential energy curves and searching transition state structure, we clarify the excited state intramolecular proton transfer mechanism of 2PYP in detail, which may make contributions for the applications of such kinds of system in future.  相似文献   

13.
The experimental and theoretical study on the structures and vibrations of 5‐fluoro‐salicylic acid and 5‐chloro‐salicylic acid (5‐FSA and 5‐ClSA, C7H5FO3 and C7H5ClO3) is presented. The Fourier transform infrared spectra (4000–400 cm−1) and the Fourier transform Raman spectra (4000–50 cm−1) of the title molecules in the solid phase were recorded. The molecular structures, vibrational wavenumbers, infrared intensities, Raman intensities and Raman scattering activities were calculated for a pair of molecules linked by the intermolecular O H···O hydrogen bond. The geometrical parameters and energies of 5‐FSA and 5ClSA were obtained for all eight conformers/isomers from density functional theory (DFT) (B3LYP) with 6‐311++G(d,p) basis set calculations. The computational results identified the most stable conformer of 5‐FSA and 5‐ClSA as the C1 form. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The spectroscopic and theoretical results were compared with the corresponding properties for 5‐FSA and 5‐ClSA monomers and dimer of C1 conformer. The optimized bond lengths, bond angles and calculated wavenumbers showed the best agreement with the experimental results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The Raman spectra of neat propionaldehyde [CH3CH2CHO or propanal (Pr)] and its binary mixtures with hydrogen‐donor solvents, water (W) and methanol (M), [CH3CH2CHO + H2O] and CH3CH2CHO + CH3OH] with different mole fractions of the reference system, Pr varying from 0.1 to 0.9 at a regular interval of 0.1, were recorded in the ν(CO) stretching region, 1600–1800 cm−1. The isotropic parts of the Raman spectra were analyzed for both the cases. The wavenumber positions and line widths of the component bands were determined by a rigorous line‐shape analysis, and the peaks corresponding to self‐associated and hydrogen‐bonded species were identified. Raman peak at ∼1721 cm−1 in neat Pr, which has been attributed to the self‐associated species, downshifts slightly (∼1 cm−1) in going from mole fraction 0.9 to 0.6 in (Pr + W) binary mixture, but on further dilution it shows a sudden downshift of ∼7 cm−1. This has been attributed to the low solubility of Pr in W (∼30%), which does not permit a hydrogen‐bonded network to form at higher concentrations of Pr. A significant decrease in the intensity of this peak in the Raman spectra of Pr in a nonpolar solvent, n‐heptane, at high dilution (C = 0.05) further confirms that this peak corresponds to the self‐associated species. In case of the (Pr + M) binary mixture, however, the spectral changes with concentration show a rather regular trend and no special features were observed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, we present the optimized ground state geometrical structures, electronic excitation energies and corresponding oscillation strengths of the low‐lying electronically excited states for the isolated Tce‐CH3COCOOH and Tce‐CH3C(OH)2COOH as well as their corresponding hydrogen‐bonded dimers Tce‐CH3COCOOH‐H2O and Tce‐CH3C(OH)2COOH‐H2O through time‐dependent density functional theory method. It is found that the intermolecular hydrogen bonds C=O···H‐O are strengthened in the electronically excited states of the hydrogen‐bonded dimers Tce‐CH3COCOOH‐H2O and Tce‐CH3C(OH)2COOH‐H2O, in that the excitation energies of the related excited states for the hydrogen‐bonded dimers are decreased compared with those of the corresponding monomers. The calculated results are consistent with the rules that are first demonstrated by Zhao on the excited‐state hydrogen bonding dynamics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Pressure effects on the Raman spectra due to the inter‐ and intramolecular vibrations of the L ‐ascorbic acid crystal were studied. The intensity of the Raman bands due to the intermolecular vibrations varies in three different ways by application of pressure. The bands of the first group become stronger, those of the second one become weaker and the third group shows no prominent change in their intensity with increasing pressure. The bands due to the intermolecular vibrations show a blue shift, while the bands due to the intramolecular vibrations shift to the blue or red depending on the vibrational modes by application of pressure. The bands assigned to the O H stretching vibrations shift to the red, the bands assigned to the CO and CC stretching vibrations shift a little to the red and the bands assigned to the other vibrations shift to the blue under high pressure. The following conclusions were derived. (1) The hydrogen bonds forming helixes become stronger and the isolated hydrogen bond becomes weaker with increasing pressure. (2) The bands of the first group owing to the intermolecular vibrations are ascribed to the vibrations related to the helix hydrogen bonds and the second group bands to the isolated hydrogen bond. (3) The CO stretching vibration couples with the CC stretching vibration. (4) The phase transitions take place at 1.8 and 4 GPa in the crystal. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
使用MP2方法研究了N-H•••O=C氢键二聚体的氢键强度,探讨了不同取代基对N-H•••O=C氢键强度的影响.研究发现,可以通过改变质子供体或受体分子上取代基的供电性或吸电性来调控氢键强度:乙基等供电子基团对N-H•••O=C氢键强度的调节作用不大;NO2和CN等强吸电子基团可极大地改变N-H•••O=C氢键强度;质子供体分子中的强吸电子基团如CN可使N-H•••O=C氢键强度增强多达4.6kcal/mol,质子受体分子中的强吸电子基团如NO2可使N-H•••O=C氢键强度减弱多达2.6kcal/mol.自然键轨道(NBO)分析表明,N-H•••O=C氢键强度越强,参与形成氢键的氢原子电荷越正,氧原子电荷越负,单体分子间电荷转移越多,N-H•••O=C氢键中氧原子孤对电子n(O)对N-H反键轨道σ*(N-H)的二阶稳定化能越大.  相似文献   

18.
使用MP2方法研究了N-H…O=C氢键二聚体的氢键强度,探讨了不同取代基对N-H…O=C氢键强度的影响.研究发现,可以通过改变取代基的供电性或吸电性来调控氢键强度:乙基等供电子基团对N-H…=C氢键强度的调节作用不大;-NO_2等强吸电子基团可极大地改变N-H…=C氢键强度;质子受体分子中的强吸电子基团如-NO_2可使N-H…O=C氢键强度减弱多达2.6 kcal/mol.自然键轨道(NBO)分析表明,N-H…O=C氢键强度越强,参与形成氢键的氢原子电荷越正,氧原子电荷越负,单体分子间电荷转移越多,N-H…O=C氢键中氧原子孤对电子n(O)对N-H反键轨道σ*(N-H)的二阶稳定化能越大.  相似文献   

19.
The relatively high acidity of the sulfamide hydrogens suggests a potential for the development of sulfamide derivatives as novel anion receptors. The interactions of sulfamide with F?, Cl?, CH3COO?, and H2PO4? anions were spectroscopically (1H and 19F NMR) and theoretically (density functional theory) analyzed, and the complexation through hydrogen bonds was confirmed by changes in the NMR signals and theoretical calculations. The replacement of 2 sulfamide hydrogens with indolyl groups yields the N,N′‐diindolylsulfamide ( DIS , N‐1H‐indol‐4‐yl‐N′‐1H‐indol‐7‐ylsulfuric diamide), whose bond rotations allow the interaction of 4 H(N) atoms with anions. The conformational preferences of DIS change upon the presence of anions, but they are practically insensitive to the anion type. According to the quantum theory of atoms in molecules, natural bond orbital analysis, and NMR chemical shifts, as well as to a thermodynamic cycle, the complex with fluoride is the most stable, followed by the oxoanion‐derived models.  相似文献   

20.
N‐Acetylneuraminic acid (sialic acid, Neu5Ac) has recently gained interest as a potential marker for a variety of pathophysiological processes, although no Raman study has been reported for this important biomolecule. In this paper, the vibrational properties of Neu5Ac were studied by means of Raman, surface‐enhanced Raman scattering (SERS), and density functional theory calculations. By adsorption of Neu5Ac on silver nanoparticle surface, strongly enhanced Raman intensities are obtained, allowing easy measurement of small amounts of aqueous Neu5Ac (10 µl of a 10−7 m solution) utilizing low laser power and short exposure time. The mechanism of adsorption of Neu5Ac on the silver surface is discussed on the basis of the experimental and theoretical results. This study demonstrates that SERS can provide an effective tool for development of a label‐free, rapid, and sensitive optical platform for identification of Neu5Ac. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号