共查询到20条相似文献,搜索用时 15 毫秒
1.
Mohammad Hossein Tavakoli Talaye Arjmand Abasi Shirin Omid Ebrahim Mohammadi‐Manesh 《Crystal Research and Technology》2013,48(2):58-68
In this paper, for an inductively heated Czochralski furnace used to grow sapphire single crystal, influence of the inner (wall‐to‐wall) and crystal internal (bulk) radiation on the characteristics of the growth process such as temperature and flow fields, structure of heat transfer and crystal‐melt interface has been studied numerically using the 2D quasi‐steady state finite element method. The obtained results of global analysis demonstrate a strong dependence of thermal field, heat transport structure and crystal‐melt interface on both types of radiative heat transfer within the growth furnace. 相似文献
2.
A three‐dimensional numerical analysis was carried out for a real Czochralski crystal growth furnace containing only gas and without any melt and crystal in order to investigate the effects of a small observation window on the temperature and flow field of the system. For this approach, the induction heating equations, the Navier‐Stokes equation with Boussinesq approximation, the continuity and energy equations have been solved in cylindrical coordinates using the finite element method. It has been found that the flow and thermal fields in the system are obviously three‐dimensional and non‐axisymmetric. The gas enters the system through the window is directed towards the opposite side wall where it is divided into two parts of vertical direction as well as expands in horizontal direction. Consequently, there is a spiral gas flow in the crucible and afterheater which rotates upwards in azimuthal direction along the walls. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
3.
N. Crnogorac H. Wilke K. A. Cliffe A. Yu. Gelfgat E. Kit 《Crystal Research and Technology》2008,43(6):606-615
The motivation for this study is the need for accurate numerical models of melt flow instabilities during Czochralski growth of oxides. Such instabilities can lead to undesirable spiralling shapes of the bulk crystals produced by the growing process. The oxide melts are characterized by Prandtl numbers in the range 5<Pr <20, which makes the oxide melt flow qualitatively different from the intensively studied flows of semiconductors characterized by smaller Prandtl numbers Pr <0.1. At the same time, these flows can be modelled experimentally by many transparent test fluids (e.g. water, silicon oils, salt melts), which have similar Prandtl numbers, but allow one to avoid the extremely high melting‐point temperatures of the oxide materials. Most previous studies of melt instabilities for Prandtl numbers larger than unity suffer from a lack of accuracy that is caused by the use of coarse grids. Recent convergence studies made for a series of simplified problems and for a hydrodynamic model of Czochralski growth showed that for a second order finite volume method reliable stability results can be obtained on grids having at least 100 nodes in the shortest spatial direction. The obvious numerical difficulties call for an extensive benchmark exercise, which is proposed here on the basis of recently published experimental and numerical data, as well as some preliminary results of this study. The calculations presented are performed by two independent numerical approaches, which are based on second‐order finite volume and finite element discretizations. We start our comparison from the steady states, whose parametric dependencies sometimes exhibit turning points and multiplicity. We then compare the critical temperature differences corresponding to the onset of instability, and finally compare calculated supercritical oscillatory states and phase plots. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
4.
Y. R. Li L. Peng S. Y. Wu N. Imaishi D. L. Zeng 《Crystal Research and Technology》2004,39(12):1055-1062
In order to understand the nature of surface spoke patterns on silicon melt in industrial Czochralski furnaces, a series of unsteady three‐dimensional numerical simulations were conducted for thermocapillary‐buoyancy flow of silicon melt in annular pool (inner radius ri = 15 mm, outer radius ro = 50 mm, depth d = 3 mm). The pool is heated from the outer cylindrical wall and cooled at the inner wall. Bottom and top surfaces either are adiabatic or allow heat transfer in the vertical direction. Results show that a small temperature difference in the radial direction generates steady roll‐cell thermocapillary‐buoyancy flow. With large temperature difference, the simulation can predict three‐dimensional oscillatory flow, which is characterized by spoke patterns traveling in the azimuthal direction. The small vertical heat flux (3 W/cm2) does not have significant effects on the characteristics of this oscillatory flow. Details of the flow and temperature disturbances are discussed and the critical conditions for the onset of the oscillatory flow are determined. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
5.
For the seeding process of oxide Czochralski crystal growth, influence of the crucible bottom shape on the heat generation, temperature and flow field of the system and the seed‐melt interface shape have been studied numerically using the finite element method. The configuration usually used in a real Czochralski crystal growth process consists of a crucible, active afterheater, induction coil with two parts, insulation, melt, gas and seed crystal. At first, the volumetric distribution of heat inside the metal crucible and afterheater inducted by the RF‐coil was calculated. Using this heat generation in the crucible wall as a source the fluid flow and temperature field of the entire system as well as the seed‐melt interface shape were determined. We have considered two cases, flat and rounded crucible bottom shape. It was observed that using a crucible with a rounded bottom has several advantages such as: (i) The position of the heat generation maximum at the crucible side wall moves upwards, compared to the flat bottom shape. (ii) The location of the temperature maximum at the crucible side wall rises and as a result the temperature gradient along the melt surface increases. (iii) The streamlines of the melt flow are parallel to the crucible bottom and have a curved shape which is similar to the rounded bottom shape. These important features lead to increasing thermal convection in the system and influence the velocity field in the melt and gas domain which help preventing some serious growth problems such as spiral growth. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
6.
In this paper, the role of seed rotation on the characteristics of the two‐dimensional temperature and flow field in the oxide Czochralski crystal growth system has been studied numerically for the seeding process. Based on the finite element method, a set of two‐dimensional quasi‐steady state numerical simulations were carried out to analyze the seed‐melt interface shape and heat transfer mechanism in a Czochralski furnace with different seed rotation rates: ωseed = 5‐30 rpm. The results presented here demonstrate the important role played by the seed rotation for influencing the shape of the seed‐melt interface during the seeding process. The seed‐melt interface shape is quite sensitive to the convective heat transfer in the melt and gaseous domain. When the local flow close to the seed‐melt interface is formed mainly due to the natural convection and the Marangoni effect, the interface becomes convex towards the melt. When the local flow under the seed‐melt interface is of forced convection flow type (seed rotation), the interface becomes more concave towards the melt as the seed rotation rate (ωseed) is increased. A linear variation of the interface deflection with respect to the seed rotation rate has been found, too. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
7.
For the seeding process of oxide Czochralski crystal growth, the flow and temperature field of the system as well as the seed‐melt interface shape have been studied numerically using the finite element method. The configuration usually used initially in a real Czochralski crystal growth process consists of a crucible, active afterheater, induction coil with two parts, insulation, melt, gas and non‐rotating seed crystal. At first the volumetric distribution of heat inside the metal crucible and afterheater inducted by the RF coil was calculated. Using this heat source the fluid flow and temperature field were determined in the whole system. We have considered two cases with respect to the seed position: (1) before and (2) after seed touch with the melt. It was observed that in the case of no seed rotation (ωseed = 0), the flow pattern in the bulk melt consists of a single circulation of a slow moving fluid. In the gas domain, there are different types of flow motion related to different positions of the seed crystal. In the case of touched seed, the seed‐melt interface has a deep conic shape towards the melt. It was shown that an active afterheater and its location with respect to the crucible, influences markedly the temperature and flow field of the gas phase in the system and partly in the melt. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
8.
A heating system is described that allows to increase the temperature gradients in rf‐heated Czochralski setups during the growth. This system applies an active afterheater, operated by a separate induction coil parallel to that heating the crucible. By changing the inductivity of an additional coil located outside the growth chamber, the ratio of the rf currents flowing through the crucible and afterheater and, consequently, the geometry of the heat input to the setup can be altered. The efficiency of the heating systems has been demonstrated in various experiments. 相似文献
9.
Carbon contamination in single crystalline silicon is detrimental to the minority carrier lifetime, one of the critical parameters for electronic wafers. In order to study the generation and accumulation of carbon contamination, transient global modeling of heat and mass transport was performed for the melting process of the Czochralski silicon crystal growth. Carbon contamination, caused by the presence of carbon monoxide in argon gas and silicon carbide in the silicon feedstock, was predicted by the fully coupled chemical model; the model included six reactions taking place in the chamber. A simplified model for silicon carbide generation by the reaction between carbon monoxide and solid silicon was proposed using the closest packing assumption for the blocky silicon feedstock. The accumulation of carbon in the melted silicon feedstock during the melting and stabilization stages was predicted. Owing to this initial carbon content in the melt, controlling carbon contamination before the growth stage becomes crucial for reducing the carbon incorporation in a growing crystal. 相似文献
10.
Yasuto 《Progress in Crystal Growth and Characterization of Materials》1999,38(1-4):261-272
The flow in an oxide melt such as LiNbO, and TiO2 in a high magnetic field was observed by using magnetic-field-applied Czochralski equipment for oxide crystals. It was found that the flows in oxides melts were very much different from these in a semiconductor melt. The single crystals of TiO2 were grown in a magnetic field by using this equipment. 相似文献
11.
X. J. Chen L. J. Liu H. Tezuka Y. Usuki K. Kakimoto 《Crystal Research and Technology》2007,42(10):971-975
A global simulation model is applied for a silicon carbide growth system heated by induction coils. A finite‐volume method (FVM) and a global model are applied to solve the equations for electromagnetic field, conductive and radiative heat transfer. The growth rate is predicted by Hertz‐Knudsen equation and one‐dimensional mass transfer equation. Further, simulations for five different coil positions are carried out to investigate the effects of coil position on temperature distribution in the furnace. The numerical results reveal that the variation of temperature in the radial direction along the substrate surface and the temperature difference between the powder and substrate are greatly affected by the coil position. The predicted growth rate along the substrate surface for five coil positions is also studied. Finally, a reasonable range of coil positions maintaining a balance between large‐diameter crystal, high growth rate, temperature limitation of material and lower electrical power consumption is obtained. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
12.
K.-H. 《Progress in Crystal Growth and Characterization of Materials》1999,38(1-4):59-71
The physical principles of electromagnetic stirring with a rotating magnetic field are explained and a mathematical model to calculate the electromagnetic volume force, the fluid flow and the transport of heat and solutes is outlined. For the electromagnetic volume force and for the order of magnitude of the flow velocities approximative analytical expressions are given. A high flexibility in configuring the volume force in order to achieve a desired flow distribution is obtained by multi-frequency stirring that is by superposition of two or several magnetic fields with different frequencies and/or sense of rotation. Results of experimental investigation and mathematical simulation of multi-frequency stirring are given. Numerical simulation of the fluid flow, the temperature and the oxygen distribution in a Czochralski process crucible was performed including the effect of single mode and multi-frequency stirring. The results indicate that electromagnetic stirring should offer large potentials for the optimization of the flow configuration in a Czochralski process crucible. Finally examples from literature of practical application of rotating magnetic fields in crystal growth are presented. 相似文献
13.
K. Kakimoto L. Liu H. Miyazawa S. Nakano D. Kashiwagi X. J. Chen Y. Kangawa 《Crystal Research and Technology》2007,42(12):1185-1189
Heat and mass transfer during crystal growth of bulk Si and nitrides by using numerical analysis was studied. A three‐dimensional analysis was carried out to investigate temperature distribution and solid‐liquid interface shape of silicon for large‐scale integrated circuits and photovoltaic silicon. The analysis enables prediction of the solid‐liquid interface shape of silicon crystals. The result shows that the interface shape became bevel like structure in the case without crystal rotation. We also carried out analysis of nitrogen transfer in gallium melt during crystal growth of gallium nitride using liquid‐phase epitaxy. The result shows that the growth rate at the center was smaller than that at the center. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
14.
The influence of the melt flow on the temperature field and interface during the vapour‐pressure‐controlled growth of GaAs was studied numerically with the commercial general‐purpose program FIDAPTM. The thermal boundary conditions for the domain of seed, crystal, boron oxide and crucible were taken from a global calculation for an equipment used at the IKZ to grow 6″ crystals. Due to the large melt volume the buoyancy forces become rather strong and have to be counteracted by reasonable rotation rates. Preliminary results have been obtained for iso‐ and counter‐rotation showing that the flow field exhibits structures on small scales. High rotation rates are needed to counteract the buoyancy flow efficiently and to achieve a smooth flat interface. Even if the the flow structure is not resolved in detail, the interface shape can be deduced form the calculations. 相似文献
15.
In this article we report on a set of two‐dimensional and three‐dimensional numerical calculations for three different oxide Czochralski configurations in order to compare the results of the electromagnetic fields and the heat generation distribution. Two configurations without and with a gap between the crucible and active afterheater have axisymmetric conditions while the configuration with an open observation window in the afterheater is characterized by a non‐axisymmetric geometry. It has been found that in the non‐axisymmetric configuration under the influence of the observation window is located at the crucible side wall after a short distance behind the window cut out. Besides this influence the volumetric distribution of heat generation in the system is about symmetric. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
16.
Different shapes and orientations of an active afterheater for oxide Czochralski crystal growth systems are considered and corresponding results of electromagnetic field and volumetric heat generation have been computed using a finite element method (Flex‐PDE package). For the calculations, the eddy current in the induction coil (i.e. the self‐inductance effect) has been taken into account. The calculation results show the importance of an active afterheater, its shape as well as its geometry and position with respect to the crucible on the heat generation distribution in a CZ growth system. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
17.
In order to understand the effects of the thermophysical properties of the melt on the transport phenomena in the Czochralski (Cz) furnace for the single crystal growth of silicon, a set of global analyses of momentum, heat and mass transfer in small Cz furnace (crucible diameter: 7.2 cm, crystal diameter: 3.5 cm, operated in a 10 Torr argon flow environment) was carried out using the finite‐element method. The global analysis assumed a pseudosteady axisymmetric state with laminar flow. The results show that different thermophysical properties will bring different variations of the heater power, the deflection of the melt/crystal interface, the axial temperature gradient in the crystal on the center of the melt/crystal interface and the average oxygen concentration along the melt/crystal interface. The application of the axial magnetic field is insensitive to this effect. This analysis reveals the importance of the determination of the thermophysical property in numerical simulation. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
18.
Huijie Li Xianglin Liu Yuxia Feng Hongyuan Wei Shaoyan Yang 《Crystal Research and Technology》2013,48(5):321-327
A large radial temperature gradient in the AlN sublimation growth system would lead to non‐uniform growth rate along the radial direction and introduce thermal stress in the as grown crystal. In this paper, we have numerically studied the radial thermal uniformity in the crucible of a AlN sublimation growth system. The temperature difference on the source top surface is insignificant while the radial temperature gradient on the lid surface is too large to be neglected. The simulation results showed that the crucible material with a large thermal conductivity is beneficial to obtain a uniform temperature distribution on the lid surface. Moreover, it was found that the temperature gradient on the lid surface decreases with increased lid thickness and decreased top window size. 相似文献
19.
C. Stelian 《Crystal Research and Technology》2013,48(9):603-611
Cadmium telluride (CdTe) and his compounds play a leading role in X‐ray and γ‐ray detector technology. One of the most used methods for growing these crystals is the travelling heater method (THM). The ingots obtained by using this technique show excellent composition uniformity, but the structural quality is affected by the presence of large grains which appear because of large curvatures of the solid‐liquid interface during the solidification process. This numerical work investigate the thermal field and melt convection in CdTe processing by THM in order to elucidate the mechanism of growing these crystals. The influence of the furnace geometry on the interface shape and temperature gradient in liquid is analyzed for samples with small (1 cm) and large (5 cm) diameters. The computations include flow effects on thermal field in the melted zone. The thermal conditions are optimized for THM growth of CdTe crystals at high solidification temperatures. A new multi‐zone furnace configuration for growing crystals of large diameter and flattened interface is proposed in this work. 相似文献
20.
Rotating or alternating magnetic fields are widely used in the industrial steel casting process or in metallurgical manufacturing. For the growth of single crystals, these techniques attracted a rapidly increasing attention within the last years: a well defined melt flow leads to a more homogeneous temperature and concentration distribution in the melt and consequently improves the growth process. Rotating magnetic fields (RMF) might be used instead of crucible and/or crystal rotation avoiding mechanically induced disturbances or might be added to conventional rotation mechanisms to gain a further flow control parameter. Compared to static magnetic fields, rotating ones are distinguished by a much lower energy consumption and technical effort. Furthermore, there are no reports on detrimental effects such as the generation of thermoelectromagnetic convection or coring effects in the grown crystals. One advantage of rotating magnetic fields is the possibility to apply them even to melts with a rather low electrical conductivity like e.g. aqueous solutions. High flow velocities are already generated with moderate fields. Therefore the field strength has to be adjusted with care because otherwise undesirable Taylor vortices might be induced. In the last years, the potential of rotating magnetic fields for crystal growth processes was demonstrated for model arrangements using e.g. gallium or mercury as a test liquid as well as for a variety of growth techniques like Float Zone, Czochralski, Bridgman, or Travelling Heater Methods: Fluctuations of the heat transport due to time-dependent natural convection have could be reduced by more than an order of magnitude or the mass transport could be improved with respect to the a better radial symmetry and/or a more homogeneous microscopic segregation. 相似文献