首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, strontium carbonate (SrCO3) crystals have been synthesized in the presence of two organic additives, including sodium citrate and hexamethylenetetramine (HMT). Scanning electron microscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, X‐ray powder diffractometry and selected area electron diffraction (SAED) were used to characterize the products. The results indicate that SrCO3rods with the ratio of length to diameter about 20 are obtained in the aqueous solution containing sodium citrate. While polycrystalline SrCO3 hierarchical branches with about 10 μm length are produced by using HMT.The possible formation mechanism of the SrCO3crystals obtained in above two systems is discussed, which can be interpreted by particle‐aggregation based non‐classical crystallization laws. Sodium citrate and HMT may direct the formation of SrCO3 rod‐like or branch‐like structures by adsorbing onto certain facets of SrCO3 crystals. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Zinc sulfide (ZnS) microspheres were synthesized by a self‐template hydrothermal route using thiourea as sulphur source. The formation of these hollow spheres was mainly attributed to the oriented aggregation of ZnS nanocystals around the gas‐liquid interface between gas (H2S, NH3, or CO2) and water followed by an Ostwald ripening process. The gas bubbles of H2S, NH3, or CO2 produced during the reaction might play a soft‐template to form ZnS hollow microspheres. The products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), electron diffraction (ED), and photoluminescence (PL). The crystal structure of prepared ZnS microspheres is hexagonal phase polycrystalline. The average microspheres diameter is 1.5 ‐ 6 µm. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Urchin‐like tungsten oxide hydrate (WO3 · H2O) hollow spheres were successfully synthesized via a self‐sacrifice template method at low temperature. The effects of reaction parameters on the preparation were studied in solution. The growth mechanism was also proposed on the basis of experimental results. In addition, the acid amount and temperature have important effects on size control of the as‐obtained samples. The achieved nanoarchitectures have typical diameters of 4–6 μm with nanoflakes of several nanometers at surface. Crystal structure, morphology, and composition of final nanostructures were characterized by X–ray diffraction (XRD) and scanning electron microscopy (SEM). Degradation experiments of organic contaminant were also performed on samples of hollow spheres and walnut‐like structures under visible‐light illumination. Hollow sphere sample exhibited better photocatalytic capability than walnut‐like sample. Possible mechanism was studied for WO3 · H2O assisted photocatalytic degradation of organic contaminant under visible light.  相似文献   

4.
We report synthesis of α‐Fe2O3 (hematite) nanorods by reverse micelles method using cetyltrimethyl ammonium bromide (CTAB) as surfactant and calcined at 300 °C. The calcined α‐Fe2O3 nanorods were characterized by X‐ray diffraction (XRD), high‐resolution scanning electron microscopy (HRSEM), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). The result showed that the α‐Fe2O3 nanorods were hexagonal structure. The nanorods have diameter of 30‐50 nm and length of 120‐150 nm. The weak ferromagnetic behavior was observed with saturation magnetization = 0.6 emu/g, coercive force = 25 Oe and remanant magnetization = 0.03 emu/g. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present a facile solution‐phase method for the synthesis of Cu2S microcrystals with rod‐like morphologies by the reaction of sulfur with three‐dimensional substrate copper foam in a mixed solvent of ethylene glycol and deionized water. The lengths of Cu2S microrods are between 80 and 150 μm and the diameter is among 3 to 8 μm. Monodisperse Cu2S microrods self‐assemble into echinus structure. The samples were characterized by X‐ray powder diffraction and scanning electron microscopy. Energy dispersive X‐ray spectroscopy was further used to testifiy the purity of Cu2S. Catalysis performance proved that the obtained Cu2S materials possess superior catalytic efficiency on methylene blue with the assistance of H2O2. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Uniform γ‐AlOOH architectures assembled by nanosheets were successfully synthesized in the mixture of deinonized water and dimethyl sulfoxide (DMSO) at 180 °C. The structure and morphology of products were characterized by X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The products displayed 3D microstructures with its length of 1 μm and diameter of 400‐500 nm. The obtained γ‐AlOOH structures exhibited large Brunauer‐Emmett‐Teller (BET) surface area of 216.5 m2/g and pore size of 3.7 nm. The formation mechanism of 3D γ‐AlOOH architectures was also discussed based on the experimental results. Furthermore, the γ‐AlOOH architectures exhibited preliminary photoluminescence (PL) phenomenon with a strong peak at 323 nm. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Antimony trioxide (Sb2O3) thin films have been deposited onto glass substrates using thermal evaporation technique at room temperature. The structural feature and surface morphology were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Sandwich‐type structures were deposited with films thickness d = 0.55 μm using evaporated electrodes of silver. Current‐voltage (J‐U) characteristics have been measured at various fixed temperatures in the range 293‐473 K. In all cases, at low electric field (E <104 V/cm), ohmic behavior is observed. However, at high electric field (E >104 V/cm), non‐ohmic behavior is observed. An analysis of the experimental data indicates that in the range of high‐applied electric field, the dominant conduction mechanism is space charge limited currents (SCLC). Using the relevant SCLC theory, the carrier concentration, total trap concentration and the ratio of free charge to trapped charge have been calculated and correlated with changes in the structures of antimony trioxide thin films. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Dendrite and platelet‐like α‐Fe2O3 microcrystals were synthesized by the oxidation reaction of K4Fe(CN)6and NaClO3 through a simple hydrothermal method. The structures and morphologies of the as‐prepared samples were characterized in detail by X‐ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The experiment results show that NaOH played an important role in controlling the morphology of the final products. The possible mechanism was discussed to elucidate the formation of different morphologies of the α‐Fe2O3 microstructures. Besides, the magnetic property of the dendrite α‐Fe2O3 microstructure was characterized by a vibrating sample magnetometer (VSM). (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Three kinds of novel indium oxide (In2O3) nanostructures, namely, nanorods, nanoflowers and nanowhiskers were synthesized on silicon substrate via a simple vapor‐phase transport method under atmospheric pressure. The In2O3nanostructures were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and energy‐dispersive X‐ray spectrometer (EDS) spectrum. The Raman spectra of these nanostructures showed four sharp scattering peaks centered at 308, 365, 522, and 628 cm‐1, whose position and intensity were characteristic of standard Raman spectra for In2O3. The Room‐temperature photoluminescence (PL) spectra showed visible emissions centered around 576, 592, and 624 nm. Field emission measurements demonstrated that the nanoflowers possessed the best performance with a turn‐on field of 3.54 V/µm and a threshold field of 9.83 V/µm. And the field enhancement factors of these nanostructures are high enough for the application of field emission display devices. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Novel ZnSe·N2H4 complex microrods with ∼2 μm in length and 100∼200 nm in diameter were successfully prepared by the solvothermal method at 110°C for 10 h, employing ZnAc2·2H2O and Se powders as the reactants, N2H4·H2O as the reductant and medium. Experiments showed that the as‐obtained complex could be further converted into pure hexagonal ZnSe in an ethanol medium at 180 °C for 10 h, and the morphology hardly changed. The as‐prepared products were characterized by X‐ray powder diffraction (XRD), Energy dispersive spectrum (EDS), IR spectrum, Thermogravimetric (TG) analysis and Field emission scanning electron microscopy (SEM). Also, their photocatalytic degradation and electrochemical property were compared. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
NbSe3 nanofibers and NbSe2 sheets were prepared by solid state reaction. The as‐prepared products are characterized by powder X‐ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that the obtained NbSe3 nanofibers have a diameter in the range of 100–300 nm and length about 10 μm, while the NbSe2 sheets have a hexagon structure. The tribological properties of the as‐prepared NbSex powders as additives in HVI500 base oil were investigated on UMT‐2 multispecimen tribo‐tester. The wear scars were measured by VEECO WYKO NT1100 non‐contact optical profile testing instrument. It is found that the addition of both NbSex nanofibers/sheets improves the tribological properties of base oil. Furthermore, NbSe2 sheets exhibit better friction reduction and wear resistance properties than NbSe3 nanofibers in HVI500 base oil. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Different morphologies of single‐crystalline orthorhombic phase bismuth sulfide (Bi2S3) nanostructures, including sub‐microtubes, nanoflowers and nanorods were synthesized by a urea‐assisted hydrothermal method at a low temperature below 120 °C for 12 h. The as‐synthesized powders were characterized by X‐ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM) and UV‐vis spectrophotometry. The experimental results showed that the sulfur sources had a great effect on the morphology and size of the resulting powders. The formation mechanism of the Bi2S3 nanostructures with different morphologies was discussed. All Bi2S3 nanostructures showed an appearance of blue shift relative to the bulk orthorhombic Bi2S3, which might be ascribed to the quantum size effect of the final products. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Lead bromide polycrystalline films were grown by the physical vapor deposition method (PVD). Glass 1″x1″ in size, uncoated, and coated with Indium Tin Oxide (ITO), was used as substrate and rear contact. The starting material was evaporated at temperatures from 395°C to 530°C under high vacuum atmosphere (6 x 10‐3 Pa) and during 8 days. The substrate temperature was prefixed from 190°C to 220°C. Film thickness yielded values from 40 to 90 μm. Optical microscopy and scanning electron microscopy (SEM) were performed on the films. Grain size resulted to be from 1.0 to 3.5 μm. SEM and X‐ray diffraction indicate that films grow with a preferred orientation with the (0 0 l) planes parallel to the substrate. The Texture Coefficient (TC) related to the plane (0 0 6) was 7.3. Resistivity values in the order of 1012 Ωcm were obtained for the oriented samples, but a strong polarization indicates severe charge transport problems in the films. Film properties were correlated with the growth temperature and with previous results for films of other halides. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Pure Co3O4 microcrystals were prepared by a hydrothermal method from Co(NO3)2·6H2O and urea solution, and the effect of thermal treatment time on the growth of Co3O4 microcrystals was studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), Raman and UV‐Vis absorption spectra. The results show that with the thermal treatment time increases from 2 h to 12 h, the shape of as‐prepared Co3O4 microcrystals changes from the hedgehog sphere‐like to the as‐cubic one that were stacked by lots of lamella, and finally cubes, and then longer time treatment will only lead to the size growth and agglomeration of particles. In conclusion, the cubic Co3O4 microcrystals of uniform size (∼6 μm) are synthesized via a 12‐h thermal treatment. Moreover, the synthesis mechanism has been studied.  相似文献   

15.
Monodispersed calcium carbonate microspheres were prepared by carbonating a calcium acetate aqueous solution with CO2 gas at a high pressure of 40 bar and a high temperature of 80 °C after 60 minutes of reaction. The products were characterized by X‐ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD pattern showed that the crystal polymorph of the as‐prepared monodispersed microspheres was aragonite. The SEM images also displayed needle‐like aragonite self‐organized into microsphere superstructure with diameters ranging from 5 to 15 μm. Analysis of the formation mechanism of the calcium carbonate microsphere superstructure revealed that the rod‐dumbbell‐sphere morphogenesis mechanism along with the phase transformation of vaterite to aragonite was responsible for the growth of the monodispersed aragonite microspheres. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Bi1.5ZnSb1.5O7 pyrochlore samples were prepared by solid state reaction method. They were examined by x‐ray diffraction and scanning electron microscopy. Single phase, belongs to the cubic pyrochlore structure, with a lattice parameter of 10.442 Å and grain size that varies from 16 to 20 μm was obtained. The electrical properties were measured at different temperatures in the range 15–330 K under different applied magnetic fields up 1.4 T. In our measurements for Hall coefficient, Hall resistivity, and mobility; we noticed an anomalous behavior at two temperatures (around 250 and 310 K) which was supported by the I‐V measurements (double transition of the slope of I‐V characteristics (β) at the same temperatures). This was discussed in terms of polarization phenomenon and mixed ionic‐electronic conduction. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The homogeneous (unseeded) precipitation of nesquehonite (MgCO3·3H2O) was studied over the temperature range of 10‐40 °C. Precipitation was triggered by the supersaturation created by mixing MgCl2 solution (0.5‐1.5 M) with Na2CO3 solution in the same concentration range. The Meissner's method was adopted in the calculation of supersaturations during the MgCl2‐Na2CO3 reaction to monitor the precipitation. Solids were identified using X‐ray diffraction (XRD) analysis and scanning electron microscope (SEM) images. In the temperature range of 10‐40 °C, MgCO3·3H2O with needle‐like or gel‐like morphology was precipitated. It was seen that the length, width and surface smoothness of the particles changed with reaction temperature and supersaturation. The supersaturation (S) was in the range of 1.09‐58.68 during titration of Na2CO3 solution. The dimension of the crystals increased with longer addition time (or lower initial concentration of reactant) at the same temperature. Slower addition via titration of 2 h followed by 2 h of equilibration at 40 °C proved successful in producing well developed needle‐like MgCO3·3H2O crystals of 30‐50 μm long and 3‐6 μm wide. MgCO3·3H2O obtained were calcined to produce highly pure magnesium oxide (MgO) at 800 °C. The morphology of MgO was similar to that of their corresponding precursors. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Hierarchical pinetree like Bi2S3 was synthesized through a facile solvothermal route in the mixture of deionized water and tetrahydrofuran. The phase composition, morphology, and structure of the as‐prepared Bi2S3 products were characterized by using various techniques including X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). It was found that the pinetree like Bi2S3 structures were composed of numerous assembled nanosheets, which had uniform morphology with the mean width and length of about 110 nm and 15 μm, respectively. Furthermore, the electrochemical property of the obtained pinetree like Bi2S3 was investigated. The pinetree like Bi2S3 presented both the high electrochemical hydrogen storage and electrochemical Li intercalation performance.  相似文献   

19.
Large‐scale In2O3 nanorods, nanocubes and nanowires have been successfully synthesized by chemical vapor deposition route under atmospheric pressure. The structures and morphologies were characterized by x‐ray diffraction (XRD), scanning election microscopy (SEM) and high‐resolution transmission electron microscopy (HRTEM). The growth mechanisms of these In2O3 nanostructures were analyzed in detail based on the experimental results. Field‐emission measurements of these nanostructures demonstrated that nanorods with rectangular cross‐section possessed good performance with a turn‐on field of 2.47 Vμm–1 and a field enhancement factor of 4597. The room‐temperature photoluminescence (PL) spectrum of the In2O3 nanostructure showed UV emission centered at about 396 nm and visible emissions located at 541 and 623 nm. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The crystal structure of the disordered modification of Ba7F12Cl2 has been carefully re‐examined on several new crystals prepared under different conditions of synthesis. All single crystal structure refinements reveal a residual electron density of ∼3 e3 in the 0,0,0 position which is explained by the introduction of a small amount of sodium ions in the crystal. The title compound transforms from a disordered to an ordered modification at ∼800 °C. New structural data show a change in space group from P63/m to P6. During this process, a slight chemical change and the formation of nano‐channels in the crystals is observed by electron microscopy. These changes were further studied by electron microprobe analysis, by spectroscopic methods and thermal analysis. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号