首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A minority-spin resonant state at the Fe/GaAs(001) interface is predicted to reverse the spin polarization with the voltage bias of electrons transmitted across this interface. Using a Green's function approach within the local spin-density approximation, we calculate the spin-dependent current in a Fe/GaAs/Cu tunnel junction as a function of the applied bias voltage. We find a change in sign of the spin polarization of tunneling electrons with bias voltage due to the interface minority-spin resonance. This result explains recent experimental data on spin injection in Fe/GaAs contacts and on tunneling magnetoresistance in Fe/GaAs/Fe magnetic tunnel junctions.  相似文献   

2.
We investigate the local tunnel magnetoresistance (TMR) effect within a single Co nanoisland using spin-polarized scanning tunneling microscopy. We observe a clear spatial modulation of the TMR ratio with an amplitude of ~20% and a spacing of ~1.3 nm between maxima and minima around the Fermi level. This result can be ascribed to a spatially modulated spin polarization within the Co island due to spin-dependent quantum interference. Our combined experimental and theoretical study reveals that spin-dependent electron confinement affects all transport properties such as differential conductance, conductance, and TMR. We demonstrate that the TMR within a nanostructured magnetic tunnel junction can be controlled on a length scale of 1 nm through spin-dependent quantum interference.  相似文献   

3.
鞠艳  邢定钰 《中国物理 B》2009,18(6):2205-2208
An FS/FE/NS/FE/FS double tunnel junction is suggested to have the ability to inject, modulate and detect the spin-polarized current electrically in a single device, where FS is the ferromagnetic semiconductor electrode, NS is the nonmagnetic semiconductor, and FE the ferroelectric barrier. The spin polarization of the current injected into the NS region can be switched between a highly spin-polarized state and a spin unpolarized state. The high spin polarization may be detected by measuring the tunneling magnetoresistance ratio of the double tunnel junction.  相似文献   

4.
Taking into account the nonequilibrium spin accumulation, we apply a quantum-statistical approach to study the spin-polarized transport in a two-dimensional ferromagnet/semiconductor/ferromagnet (FM/SM/FM) double tunnel junction. It is found that the effective spin polarization is raised by increasing the barrier strength, resulting in an enhancement of the tunneling magnetoresistance (TMR). The nonequilibrium spin accumulation in SM may appear in both antiparallel and parallel alignments of magnetizations in two FMs, in particular for high bias voltages. The effects of spin accumulation and TMR on the bias voltage are discussed.  相似文献   

5.
Electron tunneling through a single discrete level of a quantum dot, coupled to two ferromagnetic leads, is studied theoretically in the sequential tunneling regime. Electron correlations and spin relaxation processes on the dot are taken into account. It is shown that strong Coulomb correlations can enhance tunnel magnetoresistance in a certain bias range. The effect, however, is suppressed by spin-flip processes.  相似文献   

6.
Recent data on the bias dependence of the spin transfer effect in magnetic tunnel junctions have shown that torque remains intact at bias voltages for which the tunneling magnetoresistance has been strongly reduced. We show that the current induced excitations due to hot electrons, while reducing the magnetoresistance, enhance both the charge current and the spin transfer in magnetic tunnel junctions in such a manner that the ratio of the torque to the charge current does not significantly change.  相似文献   

7.
We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS.  相似文献   

8.
Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.  相似文献   

9.
An extended tunneling Hamiltonian method is proposed to study the temperature-dependent tunneling magnetoresistance (TMR) in doped magnetic tunnel junctions. It is found that for nonmagnetic dopants (Si), impurity-assisted tunneling is mainly elastic, giving rise to a weak spin polarization, thereby reduces the overall TMR, while for magnetic ions (Ni), the collective excitation of local spins in δ-doped magnetic layer contributes to the severe drop of TMR and the behavior of the variation of TMR with temperature different from that for Si-doping. The theoretical results can reproduce the main characteristic features of experiments. Received 13 January 2002 / Received in final form 30 November 2002 Published online 6 March 2003 RID="a" ID="a"e-mail: yctao12@163.com  相似文献   

10.
We investigated spin-dependent transport in magnetic tunnel junctions made of III-V Ga(1-x)Mn(x)As electrodes and II-VI ZnSe tunnel barriers. The high tunnel magnetoresistance (TMR) ratio up to 100% we observed indicates high spin polarization at the barrier/electrodes interfaces. We found anisotropic tunneling conductance having a magnitude of 10% with respect to the direction of magnetization to linearly depend on the magnetic anisotropy energy of Ga(1-x)Mn(x)As. This proves that the spin-orbit interactions in the valence band of Ga(1-x)M(x)As are responsible for the tunnel anisotropic magnetoresistance (TAMR) effect.  相似文献   

11.
The effect iron impurities have on the low-temperature behavior of the magnetoresistance of compacted powders of CrO2 ferromagnetic half-metal with anisotropic particle shape is investigated. The strong dependence of magnetoresistance on the spin relaxation rate during specimen magnetization reversal is revealed. It is shown that the addition of Fe impurities increases the powders’ coercive force and reduces tunnel magnetoresistance. A resonance mechanism of carrier tunneling in powders of CrO2 solid solutions with iron impurities is proposed.  相似文献   

12.
J. Mathon 《Phase Transitions》2013,86(4-5):491-500
Rigorous theory of the tunneling magnetoresistance (TMR) based on the real-space Kubo formula and fully realistic tight-binding bands fitted to an ab initio band structure is described. It is first applied to calculate the TMR of two Co electrodes separated by a vacuum gap. The calculated TMR ratio reaches , 65% in the tunneling regime but can be as high as 280% in the metallic regime when the vacuum gap is of the order of the Co interatomic distance (abrupt domain wall). It is also shown that the spin polarization P of the tunneling current is negative in the metallic regime but becomes positive P , 35% in the tunneling regime. Calculation of the tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction is also described. The calculated optimistic TMR ratio is in excess of 1000% for an MgO barrier of , 20 atomic planes and the spin polarization of the tunneling current is positive for all MgO thicknesses. It is also found that spin-dependent tunneling in an Fe/MgO/Fe(001) junction is not entirely determined by states at the o point ( k =0) even for MgO thicknesses as large as , 20 atomic planes. Finally, it is demonstrated that the TMR ratio calculated from the Kubo formula remains nonzero when one of the Co electrodes is covered with a copper layer. It is shown that non-zero TMR is due to quantum well states in the Cu layer which do not participate in transport. Since these only occur in the down-spin channel, their loss from transport creates a spin asymmetry of electrons tunneling from a Cu interlayer, i.e. non-zero TMR. Numerical modeling is used to show that diffuse scattering from a random distribution of impurities in the barrier may cause quantum well states to evolve into propagating states, in which case the spin asymmetry of the nonmagnetic layer is lost and with it the TMR.  相似文献   

13.
We report the clearly observed tunneling magnetoresistance at 5 K in magnetic tunnel junctions with Co-doped ZnO as a bottom ferromagnetic electrode and Co as a top ferromagnetic electrode prepared by pulsed laser deposition. Spin-polarized electrons were injected from Co-doped ZnO to the crystallized Al2O3 and tunnelled through the amorphous Al2O3 barrier. Our studies demonstrate the spin polarization in Co-doped ZnO and its possible application in future ZnO-based spintronics devices.  相似文献   

14.
We perform an ab initio study of spin-polarized tunneling in epitaxial Co/SrTiO(3)/Co magnetic tunnel junctions with bcc Co(001) electrodes. We predict a large tunneling magnetoresistance in these junctions, originating from a mismatch in the majority- and minority-spin bands both in bulk bcc Co and at the Co/SrTiO(3)/Co interface. The intricate complex band structure of SrTiO(3) enables efficient tunneling of the minority d electrons which causes the spin polarization of the Co/SrTiO(3)/Co interface to be negative in agreement with experimental data. Our results indicate that epitaxial Co/SrTiO(3)/Co magnetic tunnel junctions with bcc Co(001) electrodes are a viable alternative for device applications.  相似文献   

15.
Electron spin-polarized tunneling is observed through an ultrathin layer of the molecular organic semiconductor tris(8-hydroxyquinolinato)aluminum (Alq3). Significant tunnel magnetoresistance (TMR) was measured in a Co/Al2O3/Alq3/NiFe magnetic tunnel junction at room temperature, which increased when cooled to low temperatures. Tunneling characteristics, such as the current-voltage behavior and temperature and bias dependence of the TMR, show the good quality of the organic tunnel barrier. Spin polarization (P) of the tunnel current through the Alq3 layer, directly measured using superconducting Al as the spin detector, shows that minimizing formation of an interfacial dipole layer between the metal electrode and organic barrier significantly improves spin transport.  相似文献   

16.
The effect of the top of the valence band of an insulator on spin filtering in tunnel structures with nanometer magnetic dielectric layers is discussed. It has been shown that the effect disappears completely at a zero bias voltage and is significantly suppressed at finite voltages if the Fermi level lies in the middle of the band gap of the insulator. This is the main cause of the recently observed striking discrepancy between the theoretical values of the magnetoresistance of double tunneling spin filters and the respective experimental data.  相似文献   

17.
The effect of bias voltage on electron tunneling across a junction with a ferroelectric-ferromagnetic composite barrier is investigated theoretically. Because of the inversion symmetry breaking of the spontaneous ferroelectric polarization, bias voltage dependence of the electron tunneling shows significant differences between the positive bias and the negative one. The differences of spin filtering or tunnel magnetoresistance increase with the increasing absolute value of bias voltage. Such direction preferred electron tunneling is found intimately related with the unusual asymmetry of the electrical potential profile in two-phase composite barrier and provides a unique change to realize rectifying functions in spintronics.  相似文献   

18.
A qualitative analysis of spin-dependent tunneling in ferromagnetic metal-insulator-ferromagnetic metal junctions is performed using the WKB approximation and a parabolic band model. It is shown that, as distinct from other tunneling characteristics, only electrons moving at large angles in the plane of the tunnel barrier contribute to the magnetoresistance. The cause of the rapid decrease in the junction magnetoresistance upon applying a bias voltage across the junction is ascertained. It is shown that this cause is attributed to the mirror character of tunneling and remains valid within the framework of more complicated models.  相似文献   

19.
Inverse magnetoresistance has been observed in magnetic tunnel junctions with pinhole nanocontacts over a broad temperature range. The tunnel magnetoresistance undergoes a change of sign at higher bias and temperature. This phenomenon is attributed to the competition between the spin conserved ballistic transport through the pinhole contact where the transmission probability is close to unity and spin polarized tunneling across the insulating spacer with weak transmittivity.  相似文献   

20.
We show, using superconducting tunneling spectroscopy and tunneling magnetoresistance measurements, that ferrimagnetic alloys of Co and Gd can exhibit both positive and negative spin polarization depending on temperature and composition. These observations can be understood by considering the relative contributions of independent spin-polarized tunneling currents from the rare-earth-metal and transition-metal subnetwork magnetizations, which are coupled antiferromagnetically. At the compensation point of the alloy, where the subnetwork magnetizations are equal and the alloy has nearly zero net magnetization, nevertheless large tunneling spin polarization is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号