首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Based on SnS (Herzenbergite) – SnPbS2 (Teallite) mixed crystals with orthorhombic layer structures, thin films and lawns of Sn1‐xPbxS nanorods were produced using hot wall vacuum deposition method (HWVD). The lawn was formed onto the surface of an underlying thin Sn1‐xPbxS film which is build by differently oriented blocks. The density of rods arranged like a lawn depends on the metal ratio and substrate temperature. X‐ray and TEM analysis of the epitaxial material showed preferential (001) orientation perpendicular to the surface of the glass substrate. The roughness of the films measured by atomic force microscopy was in the range of Rq = 49.5–86.3 nm depending on lead concentration The rods were about 500 nm high and 300 nm in diameter. As revealed by TEM‐EDX experiments the droplet at the tip of rods consists of tin. Therefore it is assumed the rods grew via a self‐consuming vapor–liquid–solid (VLS) mechanism. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Layered intercalation compounds LiCo1‐xSnxO2 (x= 0 to 0.1) have been prepared using a simple combustion route method. X‐ray diffraction patterns and Laser Raman spectrum suggest that the synthesized materials had the R‐3m structure. Scanning electron images show that particles are well‐crystallized with a size distribution in the range of 50‐100 nm. The room temperature electrical conductivity of the sample increased with Sn content. For LiCo1‐xSnxO2(x = 0, 0.01, 0.03, 0.05 and 0.1), the first discharge capacity increased with increase in Sn content. Among these samples, LiCo0.95Sn0.05O2had produced the best performance of all others with a stable reversible capacity of 186 mAhg‐1 after 30 cycles. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
By annealing Pb1−xSnxTe and PbTe isothermally in a quartz ampoule Sn diffused from Pb1−xSnxTe into PbTe. The profiles obtained have been investigated by means of an electron beam microanalyser, and the coefficients of diffusion have been determined at various temperatures. The diffusion of Sn can be explained by the expressions: DPbSnTe = 1.5 · 10−1 exp (−1.8 eV/kT) cm2 s−1 (0,14 < x < 0,18) DPbTe = 5,5 · 10−4 exp (−1.5 eV/kT) cm2 s−1. N-type layers are observed at the surface of Pb1−xSnxTe specimens.  相似文献   

4.
CdSxSe1‐x films were deposited by the electron beam evaporation technique on glass substrates at different temperatures in the range 30 – 300 °C using the laboratory synthesized powders of different composition. The films exhibited hexagonal structure and the lattice parameters shifted from CdSe to CdS side as the composition changed from CdSe to CdS side. The bandgap of the films increased from 1.68 to 2.41 eV as the concentration of CdS increased. The root‐mean‐roughness (RMS) values are 3.4, 2.6, 1.2 and 0.6 nm as the composition of the films shifted towards CdS side. The conductivity varies from 30 Ωcm‐1 to 480 Ωcm‐1 as the ‘x’ value increases from 0 to 1. The films exhibited photosensitivity. The PL spectrum shifts towards lower energies with decreasing x, due to the decrease of the fundamental gap with Se composition. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Large single crystals of optical quality of the non‐centrosymmetric orthorhombic potassium rare earth nitrate mixed crystals K2(La1–x Cex)(NO3)5 · 2 H2O were grown at 38 °C from diluted HNO3. For crystals with x = 0.0, 0.19, 0.38 and 0.66 refractive indices and their dispersion were determined with an error less than 1 · 10–4 in the wavelength range 0.404 – 1.083 μm by the prism method. Phase matching conditions for collinear SHG frequency conversion were analysed in detail, including calculation of the effective nonlinear optical susceptibility. By an appropriate choice of the fraction x of cerium the mixed crystals K2(La1–x Cex)(NO3)5 · 2 H2O allow an adjustment of non‐critical type I phase matching conditions to a desired wavelength of the fundamental wave within the range 1.055(4) – 1.107(6) μm. Non‐critical type II phase matching can be tuned in the wavelength range 0.949(2) – 0.931(2) μm. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Using x‐ray diffractometry, double bridge method and dynamic resonance technique structure, electrical resistivity, elastic modulus, internal friction and thermal diffusivity of Pb63‐xSn30Sb7Cux [x=0 or x≤2.5] quaternary melt spun alloys have been investigated. Adding Cu to PbSn30Sb7 decreases electrical resistivity, elastic modulus and internal friction. The PbSn30Sb7Cu1 melt spun alloy has better properties as bearing alloy, such as low electrical resistivity, high elastic modulus and adequate internal friction, compared with the Pb88Sn10Cu2 alloy used for automotive applications (FIAT Normalizzazione). That means, it has good properties as lead free (non‐toxic) bearing alloy. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The structure and features of the surface morphology of Pb1 − x Mn x Se (x = 0.03) epitaxial films grown on freshly cleaved BaF2(111) faces and PbSe1 − x S x (100) (x = 0.12) single-crystal wafers were investigated by molecular beam condensation and the hot-wall method. It is shown that the epitaxial films, in accordance with the data in the literature for other chalcogenides, grow in the (111) and (100) planes, repeating the substrate orientation. Black aggregates are observed on the film surface of the films grown. The results obtained are compared with the data in the literature and generalized for other chalcogenides: A 4 B 6:Pb (S, Se, Te); Pb1 − x Sn x (S, Se, Te); and Pb1 − x Mn (Se, Te). It is established that the formation of black aggregates, which are second-phase inclusions on the surface of epitaxial films obtained by vacuum thermal deposition, is characteristic of narrow-gap A 4 B 6 chalcogenides.  相似文献   

8.
The solvus of the NaCl: Pb2+ system was found in the concentration range from 1.5 × 10−3 to 1.9 × 10−2 mol% at temperatures ranging from 375 to 430 °C from the data of flotation measurements of the crystal density. The heat of impurity dissolution equal to 2.0 ± ± 0.6 eV and the change in the vibrational entropy in the formation of the solid solution Sv/K= 20 ± 10 were determined. Reasons for a difference in the estimates of lead solubility in NaCl, obtained from temperature dependences of light scattering and by other methods: measurement of the density, electric conductivity, and the electron-microscopic decoration of the same crystals are discussed.  相似文献   

9.
Large and high‐quality single crystals of both Pb‐free and Pb‐doped high temperature superconducting compounds (Bi1‐xPbx)2Sr2Ca2Cu3O10‐y (x = 0 and 0.3) were grown by means of a newly developed “Vapour‐Assisted Travelling Floating Zone” technique (VA‐TSFZ). This modified zone‐melting technique was realised in an image furnace and allowed for the first time to grow Pb‐doped crystals by compensating for the Pb losses occurring at high temperature. Crystals up to 3×2×0.1 mm3 were successfully grown. Post‐annealing under high pressure of O2 (up to 10 MPa at T = 500°C) was undertaken to enhance Tc and improve the homogeneity of the crystals. Structural characterisation was performed by single‐crystal X‐ray diffraction (XRD) and the structure of the 3‐layer Bi‐based superconducting compound was refined for the first time. Structure refinement showed an incommensurate superlattice in the Pb‐free crystals. The space group is orthorhombic, A2aa, with cell parameters a = 27.105(4) Å, b = 5.4133(6) Å and c = 37.009(7) Å. Superconducting studies were carried out by A.C. and D.C. magnetic measurements. Very sharp superconducting transitions were obtained in both kinds of crystals (ΔTc ≤ 1 K). In optimally doped Pb‐free crystals, critical temperatures up to 111 K were measured. Magnetic critical current densities of 2�105 A/cm2 were measured at T = 30 K and μ0H = 0 T. A weak second peak in the magnetisation loops was observed in the temperature range 40‐50 K above which the vortex lattice becomes entangled. We have measured a portion of the irreversibility line (0.1‐5 Tesla) and fitted the expression for the melting of a vortex glass in a 2D fluctuation regime to the experimental data. Measurements of the lower critical field allowed to obtain the dependence of the penetration depth on temperature: the linear dependence of λ(T) for T < 30 K is consistent with d‐wave superconductivity in Bi‐2223. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The ellipsometry and RHEED study of high-quality MCT films grown on (112)- and (130) CdTe and GaAs by MBE was carried out. The dependence of the ellipsometric parameter ψ on MCT composition is evaluated. It was shown that such parameters as growth rate, the surface roughness, initial substrate temperature, and film composition may be measured by the in-situ ellipsometry. The appearance of surface roughness was observed in the initial stage of MCT growth under various compositions (xCdTe = 0 ÷ 0.4). The further growth at optimum conditions leads to the smoothing of the surface and supplies us with high-quality MCT films. The concentration, mobility, and life time of carriers in MCT films were respectively: n = 1.8 × 1014 ÷ 8.2 × 1015 cm−3, μn = 44000 ÷ 370000 cm2 V−1 s−1, τn = 40 ÷ 220 ns; p = 1.8 × 1015 ÷ 8.4 × 1015 cm−3, μp = 215 ÷ 284 cm2 V−1 s−1, τp = 12 ÷ 20 ns.  相似文献   

11.
The growth and structure of (1-1.5)-μm-thick Pb1?x Mn x Te(Ga)(x = 0.06) films with 0.4?0.9 at % of gallium, grown on BaF2(111) and Pb1?x Sn x Te (x = 0.2) (100) substrates by molecular beam epitaxy, have been investigated. It is established that the films are crystallized into an fcc structure, and their growth planes are (111) and (100), according to the substrate orientation. The optimal conditions for obtaining high-resistivity photosensitive p-and n-type films with a perfect crystal structure (W 1/2 = 80″?100″) have been determined.  相似文献   

12.
The optical properties of the TlInS2xSe2(1‐x)mixed crystals (0.25 ≤ x ≤ 1) have been investigated through the transmission and reflection measurements in the wavelength range of 400–1100 nm. The optical indirect band gap energies were determined by means of the analysis of the absorption data. It was found that the energy band gaps decrease with the increase of selenium atoms content in the TlInS2xSe2(1‐x)mixed crystals. The transmission measurements carried out in the temperature range of 10–300 K revealed that the rates of change of the indirect band gaps with temperature are γ = –9.2×10–4 eV/K, –6.1×10–4 eV/K, –4.7×10–4 eV/K and –5.6×10–4 eV/K for TlInS2, TlInS1.5Se0.5, TlInSSe and TlInS0.5Se1.5 crystals, respectively. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Protonic conductivity measurements are reported for H3PW12O40x21H2O single crystals in the temperature range 77 to 303 K. At room temperature, the conductivity is 0.18 Sm‐1 and falls to a minimum of 0.26×10‐3 Sm‐1 at 188 K. An anomalous behavior in conductivity observed in the temperature range 263 to 283 K is reported and it is essentially due to the disordered structure of water molecules. The activation energy determined from the least squares analysis in the temperature range 278 to 303 K and 188 to 273 K are 0.38 and 0.15 eV respectively. The observed conductivity parameter results support the vehicle mechanism as the proton conduction mechanism in this single crystal. Using the Nernst‐Einstein relation, the proton diffusion coefficient is calculated and found to be 1.29×10‐11 m2s‐1 at room temperature. Steady state photoconductivity is measured at room temperature for various intensities and the material is found to be photosensitive. The variation of photocurrent with different illumination levels is found to be linear in these single crystals. The transient photoconductivity measurement shows that the photo‐induced responses are moderate in the beginning and slow during decay process with respect to time.  相似文献   

14.
Thin films of Ag2Cu2O3 were formed on glass substrates by RF magnetron sputtering technique under different oxygen partial pressures in the range 5 × 10‐3 – 8 × 10‐2 Pa using mosaic target of Ag70Cu30. The influence of oxygen partial pressure on the core level binding energies, crystallographic structure, and electrical and optical properties of the deposited films was studied. The atomic ratio of copper to silver in the films was 0.302. The oxygen content was in correlation with the oxygen partial pressure maintained during the growth of the films. The films formed at oxygen partial pressures < 2 × 10‐2 Pa was mixed phase of Ag2Cu2O3 and Ag. The films deposited at 2 × 10‐2 Pa were single phase of Ag2Cu2O3. The crystallite size of the films formed at 2 × 10‐2 Pa was 12 nm, while those films annealed at 473 K was 16 nm. The nanocrystalline Ag2Cu2O3 films formed at oxygen partial pressure of 2 × 10‐2 Pa showed electrical resistivity of 8.2 Ωcm and optical band gap of 1.95 eV. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
BaPbO3 is assumed to be oxygen deficient but the exact determination has never been reported. The aim of this study is to investigate the correlation between synthetic conditions and the resulting oxygen deficiency of BaPbO3‐x. The formation of BaPbO3‐x by decomposition of barium‐ and lead oxalate up to 850 °C is significantly faster compared to conventional high temperature solid state reactions of oxide compounds. The discrete reaction steps were studied by simultaneous thermal analysis and X‐ray powder diffraction. The oxygen content was determined by temperature‐programmed reduction analysis. It is shown that the formation process is very sensitive to the chosen starting materials leading to different oxygen deficits caused by partial oxidation from Pb2+ to Pb4+. The resulting perovskites show chemical compositions of BaPbO2.74 and BaPbO2.82. The varying oxygen deficits should have an effect on structural properties. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
High‐pure and single‐phase AgGa1‐xInxSe2 (x=0.2) polycrystalline was synthesized by the mechanical and temperature oscillation method. Adopting the modified Bridgman method an integral AgGa1‐xInxSe2 single crystal with diameter of 14 mm and length of 35 mm has been obtained at the rate of 6 mm/day. It was found that there is a new cleavage face which was (101), and observed the four order X‐ray spectrum of the {101} faces. By the method of DSC analysis the melting and freezing points of the AgGa1‐xInxSe2 (x=0.2) single crystal were about 828°C and 790°C. The transmission spectra of the AgGa1‐xInxSe2 (x=0.2) sample of 5×6×2 mm3 were obtained by means of UV and IR spectrophotometer. The limiting frequency was 774.316nm and the band gap was 1.6eV. It can be found in the infrared spectrum that the infrared transmission was above 60% from 4000cm‐1 to 600cm‐1. The value of α in 5.3µm and 10.6µm were 0.022cm‐1 and 0.1cm‐1 respectively. All results showed that the crystal was of good quality. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
In the manganite La1‐xMxMnO3 (M = Ca, Ba, Sr) the doping concentration introduces a mixed valency (Mn3+, Mn4+) which governs the magnetic and electrical properties of the compound. The perovskite oxides La1‐3xCaxBaxSrxMnO3 (x = 0.00, 0.05, 0.10) were prepared by chemical method. Single‐phase formation is confirmed by XRD studies. The electrical behavior of compositions with x = 0.00, 0.05 and 0.10 in the system La1‐3xCaxBaxSrxMnO3 was studied in the temperature range 300‐420 K. It is observed that conductivity decreases with increasing temperature as well as dopants concentration. Metallic behavior of these compositions decreases with increasing dopants concentration (x). The microstructures of these samples have been characterized using scanning electron microscopy (SEM). (© 2007 WILEY ‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Li3 + x P1 ? x GexO4 crystals (x = 0.34) with dimensions of about 3 × 3 × 5 mm3 were grown for the first time from flux. The conductivities of the crystals measured along three directions have close values and are equal to σ ≈ 1.8 × 10?6 and 3.7 × 10?2 Sm/cm at the temperatures 40 and 400°C, respectively (similar to the case of pure lithium phosphate, somewhat lower values of electric conductivity were measure along the b axis). The activation energy of conductivity is equal to 0.54 eV. A considerable increase in the conductivity of the solid solution in comparison with the conductivity of pure lithium phosphate is explained by the specific features of the lithium sublattice in the crystal structure of the λ-Li3PO4 type.  相似文献   

19.
MgxZn1‐xO (x=0.01‐0.3) nanoparticles were synthesized by the sol‐gel technique using solutions of Mg and Zn based organometalic compounds. The electrical properties of Mg doped zinc oxide (ZnO) were studied within wide temperature range from 300 to 500 K under the N2 gas flow (flow rate: 20 sccm) and in the frequency range from 40 Hz to 1 MHz for ac electrical measurements. The dc conductivities and the activation energies were found to be in the range of 10‐9‐10‐6 S/cm at the room temperature and 0.26‐0.86 eV respectively depending on doping rate of these samples. The ac conductivity was well represented by the power law Aωs. The conduction mechanism for all doped ZnO could be related to correlated barrier hopping (CBH) model. The complex impedance plots (Nyquist plot) showed the data points lying on a single semicircle, implying the response originated from a single capacitive element corresponding to the nanoparticle grains. The crystal structures of the MgxZn1‐xO nanoparticles were characterized using X‐ray diffraction. The calculated average particle sizes values of Zn1‐xMgxO samples are found between 29.72 and 22.43 nm using the Sherrer equation. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
ZnSe films were deposited on glass substrates keeping the substrate temperatures, at room temperature (RT), 75, 150 and 250 °C. The films have exhibited cubic structure oriented along the (111) direction. Both the crystallinity and the grain size increased with increasing deposition temperature. A very high value of absorption co‐efficient (104 cm‐1) is observed. The band gap values decrease from a value of 2.94 eV to 2.69 eV with increasing substrate temperature. The average refractive index value is in the range of 2.39 – 2.41 for the films deposited at different substrate temperatures. The conductivity values increases continuously with temperature. Laser Raman spectra showed peaks at 140.8 cm‐1, 246.7 cm‐1and 204.5 cm‐1which are attributable to 2TA LO phonon and TO phonon respectively. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号