首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uniform capsule‐like α‐Fe2O3 particles were synthesized via a simple hydrothermal method, employing FeCl3 and CH3COONa as the precursors and sodium dodecyl sulfate (SDS) as soft template. X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), and high‐resolution transmission electron microscopy were used to characterize the structure of synthesized products. Some factors influencing the formation of capsule‐like α‐Fe2O3 particles were systematically investigated, including different kinds of surfactants, the concentration of SDS, and reaction times. The investigation on the evolution formation reveals that SDS was critical to control the morphology of final products, and a possible five‐step growth mechanism was presented by tracking the structures of the products at different reaction stages.  相似文献   

2.
Well‐defined (three‐dimensional) 3‐D dandelion‐like Sb2S3 nanostructures consisted of numerous nanorods have been achieved via a facile citric acid‐assisted solvothermal process. The as‐prepared products were characterized by X‐ray diffraction (XRD), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high‐resolution TEM (HRTEM), respectively. The influence factors of the formation of the hierarchical Sb2S3 nanostructures are discussed in details based on FESEM characterizations. By simply controlling the quantity of citric acid, the nucleation and growth process can be readily tuned, which brings the different morphologies and nanostructures of the final products. On the basis of a series of contrastive experiments, the aggregation‐based process and anisotropic growth mechanism are reasonably proposed to understand the formation mechanism of Sb2S3 hierarchical architectures with distinctive morphologies including nanorods, and dandelion‐like nanostructures. Charge‐discharge curves of the obtained Sb2S3 nanostructures were measured to investigate their electrochemical hydrogen storage behaviors. It revealed that the morphology played a key role on the hydrogen storage capacity of Sb2S3 nanostructure. The dandelion‐like Sb2S3 nanostructures exhibited higher hydrogen storage capacity (108 mAh g−1) than that of Sb2S3 nanorods (95 mAh g−1) at room temperature.  相似文献   

3.
Large‐scale high‐quality BaMoO4 nanocrystals have been synthesized in aqueous solutions under mild conditions with citrate as a simple additive. The crystals have bone‐like, spindle‐like and wheatear‐like morphologies assembled from nanoparticles, nanofibers and have been characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. The results showed that experimental parameters had great influences on the shape evolution of products. The adjustment of these parameters such as room temperature stirring time, reaction temperature and reaction time of hydrothermal reaction, can lead to obvious morphology changes of products, and the growth mechanism has been proposed. Room‐temperature photoluminescence indicated that the as‐prepared BaMoO4 nanocrystals had a strong blue emission peak at 481.5 nm. This facile route could be employed to synthesize more promising nanomaterials with interesting self‐assembly structures. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Monodisperse CeO2 spherical aggregates with diameters ranging from 200 to 300 nm have been successfully synthesized through a facile hydrothermal method. The structure and morphology of the samples were characterized by powder X‐ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and field‐emission scanning electron microscopy (FE‐SEM). The building blocks (primary nanocrystals) of the spherical aggregates could be effectively tuned by adding different amount of urea. Furthermore, N2 adsorption/desorption experiment displays a gradual increase of BET surface areas of spherical aggregates with increasing the amount of urea. Finally, the formation mechanism of CeO2 spherical aggregates was preliminarily discussed. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Flower‐like self‐organized crystalline ZnO architectures were obtained through a facile and controlled hydrothermal process. As‐synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), electron diffraction and UV‐Vis spectroscopy. XRD and electron diffraction results confirmed the obtained materials are pure wurtzite ZnO. The effects of different ratios of starting materials and solvent on the morphologies of ZnO hydrothermal products were also evaluated by SEM observations. It is suggested that the use of water, rather than ethanol as the solvent, as well as employing a precursor of Zn(Ac)2 and 2NaOH (v/v) in hydrothermal reactions are responsible for the generation of specific flower‐like self‐assembled ZnO structures. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Hierarchical flower‐like Bi2Te3 was synthesized through a facile solvothermal method. The crystal structure and morphology of the as‐prepared samples were characterized by X‐ray diffraction (XRD), filed emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and high resolution TEM. The reaction parameters such as reaction time, the amount of glucose, concentration of NaOH and the reaction temperature were systematically investigated. Based on the FESEM observations, a possible mechanism defined as a self‐assembly process accompanied by anisotropic growth mechanism was proposed. Moreover, the thermoelectric properties were measured at the temperature range of 300–600 K. The hierarchical flower‐like Bi2Te3 presented good thermoelectrical properties. The maximum ZT value reached up to 0.6 at 600 K, which was higher than that of Bi2Te3 nanoparticles.  相似文献   

7.
Radial‐like ZnO structures were prepared using zinc sulfate (ZnSO4·7H2O) and zinc acetate [Zn(CH3COO)2·2H2O] as zinc sources by a facile template‐free hydrothermal method in this paper. Structural and optical properties of radial‐like ZnO structures are characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV‐vis spectrophotometer and photoluminescence measurement (PL). It has been found that the distinct surface morphologies of radial‐like ZnO structures grown by different zinc sources. Slim radial‐like ZnO with a hexagonal wurtzite structure is grown by using ZnSO4·7H2O as zinc sources, whereas coarse radial‐like ZnO with zincite structure is achieved by zinc acetate. The UV‐vis absorption spectra of them both display an obvious and significant absorption in the ultraviolet region. The room temperature PL spectra of ZnO structures grown by two different zinc sources possess a common feature that consists of a strong ultraviolet (UV) peak and visible emission band.  相似文献   

8.
Flower‐like hierarchical nanostructures of titanium dioxide (TiO2) have been synthesized in large scale by a facile and controlled hydrothermal and after annealing process. The morphologies of flower‐like hierarchical nanostructures are formed by self‐organization of several tens of radially distributed thin flakes with a thickness of several nanometers holding a larger surface area. The materials are characterized by Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X‐ray diffraction (XRD). The ultraviolet photocatalytic degradation of R6G dyes has been studied over this flower‐like hierarchical nanostructures and the activity is compared with that of commercial P25 TiO2 under same conditions. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Self‐assembling nanoflakes‐based crossed architectures of stannous oxide (SnO) were successfully synthesized via template‐free hydrothermal growth method by using SnCl2·2H2O and KOH as precursors. Crystal structures, morphology, chemical composition and optical properties were examined by X‐ray diffraction (XRD), field‐emission scanning electron microscopy (FESEM), energy dispersive X‐ray analysis, and Raman spectroscopy, respectively. The results indicate that the as‐synthesized product belongs to tetragonal phase SnO with crossed morphology self‐assembled by nanoflakes. Furthermore, UV‐vis spectrophotometry was used to determine optical band gap of the SnO nanostructures and the direct band gap of 2.90 eV was obtained. The photocatalysis of the product has been evaluated with methyl orange and the high degradation ratio of 87% is obtained in 240 minutes under the measuring condition which is attributed to the wide band gap and large specific surface area of the nanoflakes‐based crossed SnO architectures. A possible growth mechanism is proposed in the end.  相似文献   

10.
A composite of graphene sheets decorated with molybdenum trioxide (MoO3) nanobelts has been fabricated via a facile and efficient hydrothermal route in the presence of NaCl. The structure, morphology of these promising composites were investigated by means of field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), Raman spectroscopy and thermogravimetric (TG) analysis. FESEM and TEM studies suggest the presence of uniform crystalline MoO3 nanobelts and graphene sheets in as‐prepared hybrid materials. XRD and Raman results confirm the reduction of graphite oxide (GO) sheets to graphene sheets accompanying by the formation of MoO3 nanobelts. Moreover, thermal properties of GO and MoO3 nanobelt‐graphene composites reveal that thermal stability of the obtained MoO3 nanobelt‐graphene composites is obviously higher than that of GO due to the transformation of GO sheets to highly stable graphene sheets in the hybrids. This work could provide new insights into the fabrication of high quality MoO3‐graphene hybrid nanomaterials and facilitate their potential applications in different fields. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
A simple and general microwave route is developed to synthesize nanostructured ZnO using Zn(acac)2·H2O (acac = acetylacetonate) as a single source precursor. The reaction time has a great influence on the morphology of the ZnO nanostructures and an interesting spindle‐like nanostructure is obtained. The microstructure and morphology of the synthesized materials are investigated by X‐ray diffraction (XRD), scanning electron microscopy (SEM), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). It is found that all of them with hexagonal wurtzite phase are of single crystalline structure in nature. Ultraviolet–visible (UV‐vis) absorption spectra of these ZnO nanostructures are investigated and a possible formation mechanism for the spindle‐like ZnO nanostructures is also proposed.  相似文献   

12.
In order to improve the performance of ZnO‐based solar cells, highly‐ordered hierarchical ZnO nanostructures were design and fabricated. The hierarchical nanostructures were grown on FTO (fluorine doped tin oxide, SnO2:F) glass substrates via a facile, low‐temperature, and low‐cost chemical route. The morphology and structure of the obtained products has been confirmed by field‐emission scanning electron microscopy and X‐ray diffraction measurements. The performance investigation of the prepared dye‐sensitized solar cells (DSSCs) demonstrates that the hierarchical ZnO nanostructure‐based solar cell shows a higher short‐circuit current density compared with the ZnO nanowire counterpart. The enhanced current density may be due to the fact that the surface area of the hierarchical nanostructures is increased. These results indicate that hierarchical ZnO nanostructures are more suitable for the application as photoelectrode of DSSCs. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Hierarchical pinetree like Bi2S3 was synthesized through a facile solvothermal route in the mixture of deionized water and tetrahydrofuran. The phase composition, morphology, and structure of the as‐prepared Bi2S3 products were characterized by using various techniques including X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). It was found that the pinetree like Bi2S3 structures were composed of numerous assembled nanosheets, which had uniform morphology with the mean width and length of about 110 nm and 15 μm, respectively. Furthermore, the electrochemical property of the obtained pinetree like Bi2S3 was investigated. The pinetree like Bi2S3 presented both the high electrochemical hydrogen storage and electrochemical Li intercalation performance.  相似文献   

14.
SrMoO4 rose‐like and persimmon‐like structures were synthesized via microwave radiation‐assisted chelating agent method. The microstructure and morphology of the as‐prepared samples were analyzed by X‐ray diffraction and field‐emission scanning electron microscope. According to the experimental results, ethylenediaminetetraacetic acid, as an outstanding chelating agent, plays an important role in inducing the morphology evolution. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Zirconium‐doped ceria hollow slightly‐truncated nano‐octahedrons (HTNOs) (Ce1‐xZrxO2) were synthesized by a one‐pot, facile hydrothermal method. The morphology and crystalline structure were characterized with powder X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and the high resolution transmission electron microscopy (HRTEM). The composition and chemical valence on the surface of the as‐prepared Ce1‐xZrxO2 powders were detected by X‐ray photoelectron spectroscopy (XPS) and energy dispersive spectrometry (EDS). The surface area and pore size distribution of as‐obtained Zr‐doped ceria HTNOs were measured by N2 adsorption‐desorption measurement. Mechanisms for the growth of Zr‐doped ceria HTNOs are proposed as both oriented attachment and Ostwald ripening process and the formation of the hollow structure is strongly dependent on the addition of Zr4+ ions. Furthermore, the as‐obtained Zr‐doped ceria HTNOs revealed superior catalytic activity and thermal stability toward CO oxidation compared to pure ceria. It may provide a new path for the fabrication of inorganic hollow structures on introducing alien metal ions.  相似文献   

16.
With a facile solvothermal method, Ag@Fe3O4 nanowire was successfully prepared and characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The obtained Ag@Fe3O4 nanowire posses enhanced peroxidase‐like activity with good stability and high absorbance. The optimization of pH, H2O2 concentration and loading capacity were carried out. The result of kinetic analysis indicates that the catalyzed reaction followed a Michaelis‐Menten behavior. The good peroxidase‐like activity makes Ag@Fe3O4 nanowire be promising for real application in biomedicine.  相似文献   

17.
Large‐scale high‐quality SrWO4 nanocrystals have been synthesized in aqueous solutions under mild hydrothermal conditions with citrate as a simple additive. The crystals undergo an interesting 0‐D to 1‐D and to 0‐D morphology changes and have been characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. The results showed that the experimental parameters had great influences on the shape evolution of products. The adjustment of these parameters such as the addition of the citrate and hydrothermal reaction conditions, can lead to obvious morphology changes of products, and the growth mechanism has been proposed. Room‐temperature photoluminescence indicated that the as‐prepared SrWO4 nanocrystals had strong emission peaks at about 434 and 506 nm, respectively. This facile route could be employed to synthesize more promising nanomaterials with interesting self‐assembly structures. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Cross‐like Pr2(C2O4)3·10H2O micro‐particles were synthesized through a simple precipitation method at room temperature. The products were characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), field‐emission scanning electron microscopy (FESEM), thermogravimetry–differential thermal analysis (TG‐DTA) and photoluminescence (PL). The possible formation mechanism of the cross‐like Pr2(C2O4)3·10H2O micro‐particles was discussed, and Pr6O11 with similar morphology was obtained by calcining the oxalate precursor. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Dendrite and platelet‐like α‐Fe2O3 microcrystals were synthesized by the oxidation reaction of K4Fe(CN)6and NaClO3 through a simple hydrothermal method. The structures and morphologies of the as‐prepared samples were characterized in detail by X‐ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The experiment results show that NaOH played an important role in controlling the morphology of the final products. The possible mechanism was discussed to elucidate the formation of different morphologies of the α‐Fe2O3 microstructures. Besides, the magnetic property of the dendrite α‐Fe2O3 microstructure was characterized by a vibrating sample magnetometer (VSM). (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The flower‐like ZnO with micro‐nano hierarchical structure is successfully obtained by a simple hydrothermal synthesis, using sodium dodecyl benzene sulfonate (SDBS) as a structure direct agent. The resulted ZnO micro‐flowers are very uniform in morphology with particle sizes around 1 µm. A number of techniques, including X‐ray diffraction (XRD), field emission scan electron microscopy (FESEM), energy‐dispersive spectroscopy (EDS), fourier transform infrared (FTIR) spectra and thermogravimetry analysis (TGA), are used to characterize the obtained ZnO. The self‐assemble of ZnO nano‐sheets under the direction of SDBS leads to the formation of ZnO micro‐flowers. The room temperature photoluminescence property of the obtained flower‐like ZnO exhibits a broad visible light emission. The surface of as‐made ZnO shows a very hydrophilic property, while the special micro‐nano hierarchical structure enables the ZnO micro‐flower a superhydrophobic surface after modification of fluoroalkylsilane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号