首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The recently developed isotopically edited internal standard approach for surface‐enhanced resonance Raman scattering (SERRS) based chemical quantification is extended to demonstrate multiplexed detection of four different isotopic variants of a single chromophore. More specifically, it is shown that rhodamine‐6G (R6G) with 0, 2, 4, or 6 deuterium substitutions may be reliably quantified in either two‐ or three‐component mixtures. Thus, one isotopic species of known concentration may be used as an internal standard to determine the concentrations of two other isotopic components in a mixture. The concentrations of isotopic R6G SERRS chromophores are determined using partial least squares calibration and shown to yield a predictive accuracy of about ± 10% of the total R6G concentration (over 1–50 nM concentration range). These results set the stage for the use of such isotopic variants as tags for the SERRS/SERS quantitation of mixtures containing proteins, peptides, and other compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Carbendazim (MBC) is a fungicide widely used in agriculture, and there are serious concerns regarding the health risks that could be caused by this fungicide. Here, we explore its ultrasensitive detection by surface‐enhanced Raman scattering (SERS). First, to obtain maximum SERS signal, the adsorption of the target molecule onto metallic surface is essential. Therefore, we study the adsorption of the MBC onto the nanoparticle surface by SERS under different experimental conditions, such as different synthesis methods of nanoparticle, variable excitation wavelength, and fungicide concentration with the aim to detect MBC at low concentrations. Experiments are carried out with three kinds of colloidal nanoparticles: Ag and Au reduced by citrate and Ag reduced by hydroxylamine. However, mainly Ag colloids are highly efficient in the SERS detection of MBC. In addition, theoretical calculations of MBC Raman spectrum and that of the surface complex are used to help with the understanding the mechanisms responsible for the interaction between MBC and Ag. Ultraviolet–visible absorption spectroscopy showed displacement to the red of the plasmon resonance of Ag colloid in the presence of MBC. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In order to get insight into the chemical heterogeneities of solid tumors, here we report the first surface‐enhanced Raman scattering (SERS) experiment from normal and altered epithelial layer in human colon carcinoma tissues. The Ag colloidal nanoparticles that can be incorporated into the interstitial space in solid tumors or those penetrating into cytoplasm or nucleus of many cells allowed high quality SERS signal. Different tissue structures of tumor and normal colon have characteristic features in SERS spectra. Prominent SERS features of malignant tissue spectra are related to the strong enhancement of the bands preponderantly attributable to DNA or RNA bases. The preliminary studies demonstrate that it is possible to probe Ag colloidal nanoparticles adsorption onto the tissue resulting in a strong molecular signaling with high specificity and rapid acquisition time using visible laser line excitation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Large area (3 × 3 cm2) substrates for surface‐enhanced Raman scattering were fabricated by combining femtosecond laser microstructuring and soft lithography techniques. The fabrication procedure is as follows: (i) femtosecond laser machining is used to create a silicon master copy, (ii) replicates from polydimethylsiloxane are made, and (iii) a 50‐nm‐thick gold film is deposited on the surface of the replicates. The resulting substrates exhibit strongly enhanced absorption in the spectral region of 350 ∼ 1000 nm and generate enhanced Raman signal with enhancement factor of the order of 107 for 10‐ 6 M rhodamine 6G. The main advantages of our substrates are low cost, large active area, and possibility for mass replication. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
We investigated the effect of layer‐by‐layer AuCl3 doping on the electrical and optical properties of stacked graphene films. Graphene grown by the chemical‐vapor deposition method on a Cu‐foil was chemically doped by AuCl3 solution with a concentration of 20 mM. Eight different configurations were prepared and analyzed by using four‐point probe measurements, optical transmittance measurements, scanning electron microscopy, and micro‐Raman spectroscopy to compare the optical and electrical characteristics of the different graphene samples. In our study, the top‐layer doping method was very effective because better performances considering both sheet resistance and optical transmittance were observed from the configurations with the top‐layer doped. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Melamine, a nitrogen‐rich chemical, has recently caused enormous economic losses to the food industry due to the cases of milk products adulterated by melamine. This has led to an urgent need of rapid and reliable methods for detection of melamine in food. In this study, surface‐enhanced Raman scattering (SERS) spectroscopy was used to detect melamine in liquid milk. The sample preparation with liquid milk is very easy; it has to be only diluted with double‐distilled water followed by centrifugation. By using a silver colloid, at least a 105‐fold enhancement of the Raman signal was achieved for the measurement of melamine. The limit of detection by this method was 0.01 µg ml−1 for melamine standard samples. Based on the intensity of the Raman vibrational bands normalised to that of the band at 928 cm−1 (CH2), an external standard method was employed for quantitative analysis. The linear regression square (R2) of the curve was 0.9998; the limit of quantitation using this approach was 0.5 µg ml−1 of melamine in liquid milk; the relative standard deviation was ≤10%; and recoveries were from 93 to 109%. The test results for SERS were very precise and as good as those obtained by liquid chromatography/tandem mass spectrometry. The method was simple, fast(only needs about 3 min), cost effective, and sensitive for the detection of melamine in liquid milk samples. Therefore, it is more suitable for the field detection of melamine in liquid milk. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
8.
We report a novel method for the fabrication of films of silver nanoparticle aggregates that are strongly attached to Si substrates (Thiol‐immobilized silver nanoparticle aggregates or TISNA). The attachment is achieved by chemically modifying the surface of a Si(100) surface in order to provide SH groups covalently linked to the substrate and then aggregating silver nanoparticles on these thiol covered surfaces. The transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) characterization show a high coverage with single nanoparticles or small clusters and a partial coverage with fractal aggregates that provide potential hot spots for surface enhanced Raman scattering (SERS). We have confirmed the SERS activity of these films by adsorbing rhodamine 6G and recording the Raman spectra at several concentrations. By using the silver‐chloride stretching band as an internal standard, the adsorbate bands can be normalized in order to correct for the effects of focusing and aggregate size, which determine the number of SERS active sites in the focal area. This allows a quantitative use of SERS to be done. The adsorption–desorption of rhodamine 6G on TISNA films is reversible. These features make our TISNA films potential candidates for their use in chemical sensors based on the SERS effect. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Surface‐enhanced Raman scattering (SERS) is an extremely powerful tool for the analysis of the composition of bimetallic nanoparticle (BNP) surfaces because of the different adsorption schemes adopted by several molecules on different metals, such as Au and Ag. The preparation of BNPs normally implies a change in the plasmonic properties of the core metal. However, for technological applications it could be interesting to synthesize core–shell structures preserving these original plasmonic properties. In this work, we present a facile method for coating colloidal gold nanoparticles (NPs) in solution with a very thin shell of silver. The resulting bimetallic Au@Ag system maintains the optical properties of gold but shows the chemical surface affinity of silver. The effectiveness of the coating method, as well as the progressive silver enrichment of the outermost part of the Au NPs, has been monitored through the SERS spectra of several species (chloride, luteolin, thiophenol and lucigenin), which show different behaviors on gold and silver surfaces. A growth mechanism of the Ag shell is proposed on the basis of the spectroscopic and microscopic data consisting in the formation and deposit of Ag clusters on the Au NP surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Silver nanoparticles deposited on various ‘inert’ porous materials (mainly Al2O3 and TiO2) are often used as substrates for surface‐enhanced Raman scattering (SERS) measurements. In this study, we used the sputter deposition technique to cover tubular arrays of Al2O3 and TiO2 with Ag nanoparticles. Raman spectra of pyridine (as a probe molecule) and of two selected dyes (5‐(4‐dimethylaminobenzylidene)rhodanine and 5‐(4‐(dimethylamino)benzylidene)‐3‐(3‐methoxypropyl)rhodanine) adsorbed on fabricated Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al substrates were measured. We found that the SERS spectra of pyridine adsorbed on Ag nanoparticles deposited on an Al2O3‐n/Al substrate are distinctly different from those measured for an Ag/TiO2‐n/Ti composite. Similar effects were observed for dyes adsorbed on the surface of both composites. The spectral differences between two kinds of composites (Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al) are discussed in terms of (1) the modified electronic structure of the Ag nanoparticles due to their interaction with different substrate materials and (2) the different atomic topology of the metal particles thus deposited on the surfaces of the substrates. Composite samples were also studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The surface‐enhanced Raman scattering substrate of Ag–Ag nanocap arrays are prepared by depositing Ag film onto two‐dimensional (2D) polystyrene colloidal nanosphere templates. When the original colloidal arrays are used as the substrate for Ag deposition, surface‐enhanced Raman scattering (SERS) enhancements show the strong size‐dependence behaviours. When O2‐plasma etched 2D polystyrene templates are used as the substrate for Ag deposition to form nanogaps, the gap sizes between adjacent Ag nanocaps from 5 to 20 nm generate even greater SERS enhancements. When SiO2 coverage is deposited to isolate the Ag nanocaps from the neighbours, the SERS signals are enhanced more. The significant SERS effects are due to the coupling between Ag nanocaps controlled by the distance, which enhances the local electric‐field intensity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Here, we report the nature of new di‐α‐amino (L1–L3) and α‐amino‐α‐hydroxyphosphinic (L4–L6) acids, which are considered potential inhibitors of the aminopeptidase N, adsorbed on a colloidal silver surface by means of surface‐enhanced Raman scattering (SERS) spectroscopy. In order to reveal the adsorption mechanism of these species from their SERS spectra, Fourier‐transform Raman (FT‐RS) spectra of these nonadsorbed molecules were measured. By examining the enhancement, shift in wavenumbers, and changes in breadth of the SERS bands due to the adsorption process, we revealed that the tilted compounds interact with the colloidal silver substrate mainly through the benzene ring, amino group, and phosphinic moiety in the following way. The benzene ring of L2 and L3 is ‘standing up’ on the colloidal silver surface, and the C N bond is almost vertical to it, while the tilt angle between the O PO bond and this surface is greater than 45°. On the other hand, for L1, L4, and L5, the aromatic ring and C N bond are arranged more or less tilted, and the tilt angle between the O PO bond and the silver substrate is smaller than 45°. The elongation of the bond to the benzene ring, the L6 case, produces an almost horizontal orientation of the benzene ring and the O PO bond on the silver nanoparticles. For these ligands, the complement inhibition IC50 tested in vitro using porcine kidney leucine aminopeptidase was correlated mainly with the behavior of the O PO and C CH N fragments on the silver surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Roughened nickel electrode surfaces have been demonstrated to exhibit a moderate enhanced Raman scattering effect with an enhancing factor of about 104, which is not suitable in some cases for further inhibition adsorbates study. We reported here a new modified roughening procedure of nickel electrodes, by which a high S/N ratio surface‐enhanced Raman spectroscopy (SERS) of pyridine was obtained. At least two major advantages were found for the modified roughening methods: (1) enhancing factor was improved by a factor of about 10, (2) SERS‐active sites were distributed uniformly on the Ni surfaces. Potential‐dependent SERS spectra of a candidate inhibitor molecule benzotriazole (BTAH) adsorbed onto nickel electrodes were briefly presented for verifying the feasibility of the modified roughening method in this paper. Results showed that BTAH molecules were adsorbed on the nickel electrodes in neutral molecule form at more negative potentials and a polymer‐like film with the composition of [Nin(BTA)p]m formed on the nickel electrodes with the positive shift of potentials. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The sensitivity of far‐field Raman micro‐spectroscopy was investigated to determine quantitatively the actual thickness of organic thin films. It is shown that the thickness of organic films can be quantitatively determined down to 3 nm with an error margin of 20% and down to 1.5 nm with an error margin of 100%. Raman imaging of thin‐film surfaces with a far‐field optical microscope establishes the distribution of a polymer with a lateral resolution of ~400 nm and the homogeneity of the film. Raman images are presented for spin‐coated thin films of polysulfone (PSU) with average thicknesses between 3 and 50 nm. In films with an average thickness of 43 nm, the variation in thickness was around 5% for PSU. In films with an average thickness of 3 nm for PSU, the detected thickness variation was 100%. Raman imaging was performed in minutes for a surface area of 900 µm2. The results illustrate the ability of far‐field Raman microscopy as a sensitive method to quantitatively determine the thickness of thin films down to the nanometer range. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
We report an in situ measurement of the interaction of an imidazolium‐based room temperature ionic liquid with both pure silver and a graphene‐over‐silver electrode under an applied electrochemical potential. At a negative applied potential, overall signal intensity increased indicating enhanced ionic liquid concentration at both silver and graphene electrodes. Vibrational modes associated with the imidazolium ring exhibited greater intensity enhancements and larger peak shifts compared with the anion indicating that the cation adsorbs with the ring and alkyl chain parallel to the electrode surface for both silver and graphene. In contrast to the silver, the surface enhanced Raman spectra of the ionic liquid near graphene showed shifts in the cation peaks even at no applied potential because of the strong π–π interaction between the ionic liquid and the graphene. Furthermore, the intensity of the graphene peak decreased in the presence of ionic liquid possibly due to the interaction between the ionic liquid and graphene. These results illustrate the effectiveness of surface‐enhanced Raman spectroscopy to investigate electrolyte interactions with graphene at the liquid/electrode interface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
We have demonstrated a novel method to generate the nanostructured substrate that shows a large enhancement with a spatially uniform enhancement factor of approximately 106 in surface enhanced Raman scattering (SERS). The substrates are fabricated using plasma selective etching. First, the Al2O3–TiC template which contains mixed Al2O3 and TiC grains with the diameters of ~400 nm is selected as a base plate. The Al2O3 and TiC grains have different physical properties, such as hardness, which corresponds to different etching rate in a plasma gas. Then, the Al2O3–TiC substrate is selectively etched to generate a random macro‐texture (MT) with different depths using the plasma of mixed gas of Ar and C2H4. Third, the MT substrate is deposited with a silver film (Ag). We further demonstrate that by varying the thickness of Ag layer, the EF is different which is confirmed by the plasmonic localized electric fields calculations using finite difference time domain. Finally, we combine this novel Ag MT substrate with ultrathin dielectric film, and the prepared substrates are coated with a 10 Å ta‐C film. The 10 Å ta‐C film can protect the oxygen‐free Ag in air and prevent Ag ionizing in aqueous solutions. More importantly, the ultrathin ta‐C can release the strongest plasmonic electric field to the outside of ta‐C layer and get a higher electric field than the uncoated Ag substrate. We expect that this method has more potential applications in analytic assays using SERS technology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
To increase the sensitivity in surface‐enhanced Raman scattering (SERS) measurement, a three‐dimensional (3D) SERS substrate was prepared by the decoration of silver nanoparticles (AgNPs) on the side walls of ZnO nanowires. The prepared 3D SERS substrates provide the advantages of highly loaded density of AgNPs, with a large specific surface area to interact with analytes, and the ease for the analytes to access the surfaces of AgNPs. To prepare the substrates, ZnO nanowires were first grown on a glass plate by wet chemical method. By treating SnCl2 on the surfaces of ZnO nanowires, Ag seeds could be formed on the side wall of the ZnO nanowires, which were further grown to a suitable size for SERS measurements via photochemical reduction. To optimize and understand the influences of the parameters used in preparation of the substrates, the reaction conditions were systematically adjusted and examined. Results indicated that AgNPs could be successfully decorated on the side wall of the ZnO nanowires only by the assistances of SnCl2. The size and density of AgNPs were affected by both the concentration of silver nitrate and the irradiation time. With optimized condition, the prepared 3D substrates provided an enhancement factor approaching 7 orders of magnitude compared with conventional Raman intensity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A simple synthesis method of silver nanoparticles and its application as an active surface‐enhanced Raman spectroscopy (SERS) colloid are presented in this work. The photoreduction of AgNO3 in presence of sodium citrate (NaCit) was carried out by irradiation with different light sources (UV, white, blue, cyan, green, and orange) at room temperature. The evaluation of silver nanoparticles obtained as a function of irradiation time (1–24 h) and light source was followed by UV‐visible absorption spectroscopy. This light‐modification process results in a colloid with distinctive optical properties that can be related to the size and shape of the particles. The Ag colloids, as prepared, were employed as active colloids in SERS. Pyridine and caffeine were used as test molecules. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Temporal Raman scattering measurements with 488, 532 and 632 nm excitation wavelengths and normal Raman studies by varying the power (from 30 W/cm2 to 2 MW/cm2) at 488 nm were performed on silver oxide thin films prepared by pulsed‐laser deposition. Initially, silver oxide Raman spectra were observed with all three excitation wavelengths. With further increase in time and power, silver oxide photodissociated into silver nanostructures. High‐intensity spectral lines were observed at 1336 ± 25 and 1596 ± 10 cm−1 with 488 nm excitation. No spectral features were observed with 633 nm excitation. Surface‐enhanced resonance Raman scattering theory is used to explain the complex behavior in the intensity of the 1336/1596 cm−1 lines with varying power of 488 nm excitation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
We report here, for the first time, a simple method to prepare size‐controllable Au nanoparticles (NPs) in aqueous solutions from bulk Au substrates. First, chitosan (Ch)‐capped Au‐containing complexes were prepared by electrochemical oxidation–reduction cycles in 0.1 N NaCl and 1 g/l Ch solutions. Then the solutions were heated from room temperature to boiling at different heating rates to synthesize size‐controllable Au NPs. The particle sizes of the prepared Au(111) NPs could be controlled from 5 to 30 nm with an increase of the heating rate during preparation. Experimental results indicate that the prepared Au(111) NPs with diameters ranging from 10 to 30 nm can serve as surface‐enhanced Raman scattering active probes for molecules of rhodamine 6G. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号