首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An experimental investigation on flow around an oscillating bubble and solid ellipsoid with a flat bottom was conducted. A single air bubble (equivalent diameter De=9.12 mm) was attached to a small disk (1 mm) at the end of a needle and suspended across a vertical square channel (100 mm) by wire wherein water flowed downward at a constant flowrate. The solid ellipsoid (De9.1 mm) was suspended across the square channel in the same manner. The equivalent diameter-based Reynolds and Eotvos number range, 1950<Re<2250 and 11<Eo<11.5, placed the bubble in the ‘wobbly’ regime while the flow in its wake was turbulent. A constant flowrate and one bubble size was used such that flow in the wake was turbulent. Velocity measurements of the flow field around the bubble or solid were made using a one CCD camera Digital Particle Image Velocimetry (DPIV) system enhanced by Laser Induced Fluorescence (LIF). The shape of the bubble or solid was simultaneously recorded along with the velocity using a second CCD camera and an Infrared Shadow Technique (IST). In this way both the flow-field and the boundary of the bubble (solid) were measured. The velocity vector plots of flow around and in the wake of a bubble/solid, supplemented by profiles and contours of the average and root-mean-square velocities, vorticity, Reynolds stress and turbulent kinetic energy, revealed differences in the wake flow structure behind a bubble and solid. One of the significant differences was in the inherent, oscillatory motion of the bubble which not only produced vorticity in the near-wake, but as a result of apparent vorticity stretching distributed the turbulent kinetic energy associated with this flow more uniformly on its wake, in contrast to the solid.  相似文献   

2.
This study investigates the flow past a confined circular cylinder built into a narrow rectangular duct with a Reynolds number range of 1,500 ≤ Re d ≤ 6,150, by employing the particle image velocimetry technique. In order to better explain the 3-D flow behaviour in the juncture regions of the lower and upper plates and the cylinder, respectively, as well as the dynamics of the horseshoe vortex system, both time-averaged and instantaneous flow data are presented for regions upstream and downstream of the cylinder. The size, intensity and interaction of the vortex systems vary substantially with the Reynolds number. Although the narrow rectangular duct with a single built-in cylinder is a geometrically symmetrical arrrangement, instantaneous flow data have revealed that the flow structures in both the lower and upper plate–cylinder junction regions are not symmetrical with respect to the centreline of the flow passage. The vortical flow structures obtained in side-view planes become dominant sometimes in the lower juncture region and sometimes in the upper juncture region in unsteady mode.  相似文献   

3.
 A hybrid holographic system has been developed for three-dimensional particle image velocimetry. With unique high pass filters, the system combines advantages of both in-line and off-axis holography without having their draw-backs. It improves the signal to noise ratio of the reconstructed image, allows use of 3–15 μm particles in water at high population and achieves large dynamic ranges in both velocity and space. With an automated image acquisition and processing system it has been used for measuring the velocity distributions in a square duct at Re=1.23×105. The data consists of 97×97×87 vectors (with 50% overlapping of adjacent interrogation windows). The quality of the results is evaluated using the continuity equation. The deviation from the equation decreases rapidly with increasing control volume and reaches a level of less than 10%. Mean velocities, r.m.s. velocity fluctuations and turbulence spectra are estimated using the data. Received: 16 December 1996/Accepted: 6 March 1997  相似文献   

4.
5.
The flow structure of a bubbly impinging jet in the presence of heat transfer between the two-phase flow and the surface is numerically investigated on the basis of the Eulerian approach. The model uses the system of Reynolds-averaged Navier–Stokes equations in the axisymmetric approximation written with account for the inverse effect of the bubbles on the average and fluctuating flow parameters. The influence of the gas volumetric flow rate ratio and the dimensions of the bubbles on the flow structure in a gas-liquid impinging jet is studied, In the presence of gas bubbles the liquid velocity is higher than the corresponding value in the single-phase flow. A considerable, more than twofold, anisotropy between the axial and radial turbulent fluctuations in the gas-liquid impinging jet is shown to exist. An addition of air bubbles leads to a considerable growth in the liquid velocity fluctuations in the two-phase flow (up to 50% compared with the single-fluid liquid impinging jet). An increase in the disperse phase dimensions leads to intensification of turbulence of the liquid.  相似文献   

6.
A generalization of the analytic functions is proposed to solve the problem of axisymmetric flow past a gas bubble. By the use of an integral transformation the problem is reduced to that of two-dimensional parallel flow, which can be investigated by the well-known methods of the theory of analytic functions. The problem of plane flow is solved by means of a total approximation for the parametric plane.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 98–103, September–October, 1993.  相似文献   

7.
8.
This study utilized the particle image velocimetry (PIV) technique, non-invasively near the wall, in the developing region, for the measurements of laminar and turbulent properties during circulation of Geldart B type particles in the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) riser. A novel method was used to measure axial and radial laminar and turbulent solids dispersion coefficients using autocorrelation technique.The instantaneous and hydrodynamic velocities for the solid phase were measured simultaneously in the axial and radial directions using a CCD camera, with the help of a colored rotating transparency. The measured properties, such as laminar and Reynolds stresses, laminar and turbulent granular temperatures, laminar and turbulent dispersion coefficients and energy spectra exhibited anisotropy. The mixing in the riser was on the level of clusters. The total granular temperatures were in reasonable agreement with the literature values. However, the axial and radial solids dispersion coefficients measured near the wall were slightly lower than the radially averaged values in the literature.  相似文献   

9.
Scanning PIV is applied to a laminar separation bubble to investigate the spanwise structure and dynamics of the roll-up of vortices within the bubble. The laminar flow separation with turbulent reattachment is studied on the suction side of an airfoil SD7003 at Reynolds numbers of 20,000–60,000. The flow is recorded with a CMOS high-speed camera in successive light-sheet planes over a time span of 1–2 s to resolve the temporal evolution of the flow in the different planes. The results show the quasi-periodic development of large vortex-rolls at the downstream end of the separation bubble, which have a convex structure and an extension of 10–20% chord length in the spanwise direction. These vortices possess an irregular spanwise pattern. The evolution process of an exemplary vortex structure is shown in detail starting from small disturbances within the separation bubble transforming into a compact vortex at the downstream end of the separation bubble. As the vortex grows in size and strength it reaches a critical state that leads to an abrupt burst of the vortex with a large ejection of fluid into the mean flow.  相似文献   

10.
An example of high-velocity open channel flows is a supercritical flow past an abrupt drop. In such a geometry, the basic air–water flow properties were measured, including distributions of void fraction and bubble count rate, and local air and water chord size distributions, at and downstream of the backward-facing step. The bubble count rate distributions were compared with a conceptual model of streamwise distribution of air and water chords which yields a quasi-parabolic relationship between bubble count rate and void fraction. The proposed model was an attempt to explain the experimental relationship between bubble count rate and void fraction, rather a meticulous breakdown of the complex air–water structure.  相似文献   

11.
Whole field velocity and point temperature and surface heat flux measurements were performed to characterise the interaction of a single rising ellipsoidal air bubble with the free convection flow from a heated flat surface immersed in water at different angles of inclination. Two thermocouples and a hot film sensor were used to characterise heat transfer from the surface, while a time-resolved digital particle image velocimetry technique was used to map the bubble induced flow in a plane parallel to the surface. Heat flux fluctuations, preceding and following the bubble passage, were shown to correlate with the variation in both local flow velocities and fluid temperatures. The largest increases in heat transfer were recorded when both flow and temperature effects combined to enhance the convective cooling simultaneously. Such conditions were shown to be most likely met when the block was inclined at 45°, thus forcing the bubble to slide closer to the heated surface and hence to the thermal boundary layer.  相似文献   

12.
To comprehensively understand the effects of Kelvin–Helmholtz instabilities on a transitional separation bubble on the suction side of an airfoil regarding as to flapping of the bubble and its impact on the airfoil performance, the temporal and spatial structure of the vortices occurring at the downstream end of the separation bubble is investigated. Since the bubble variation leads to a change of the pressure distribution, the investigation of the instantaneous velocity field is essential to understand the details of the overall airfoil performance. This vortex formation in the reattachment region on the upper surface of an SD7003 airfoil is analyzed in detail at different angles of attack. At a Reynolds number Re c < 100,000 the laminar boundary layer separates at angles of attack >4°. Due to transition processes, turbulent reattachment of the separated shear layer occurs enclosing a locally confined recirculation region. To identify the location of the separation bubble and to describe the dynamics of the reattachment, a time-resolved PIV measurement in a single light-sheet is performed. To elucidate the spatial structure of the flow patterns in the reattachment region in time and space, a stereo scanning PIV set-up is applied. The flow field is recorded in at least ten successive light-sheet planes with two high-speed cameras enclosing a viewing angle of 65° to detect all three velocity components within a light-sheet leading to a time-resolved volumetric measurement due to a high scanning speed. The measurements evidence the development of quasi-periodic vortex structures. The temporal dynamics of the vortex roll-up, initialized by the Kelvin–Helmholtz (KH) instability, is shown as well as the spatial development of the vortex roll-up process. Based on these measurements a model for the evolving vortex structure consisting of the formation of c-shape vortices and their transformation into screwdriver vortices is introduced.  相似文献   

13.
Turbulent opposed jet burners are an excellent test case for combustion research and model development due to the burners’ compactness, relative simplicity, and the good optical access they provide. The flow-field in the flame region depends strongly on the turbulence generation inside the nozzles, so that realistic flow simulations can only be achieved if the flow inside the nozzles is represented correctly, which must be verified by comparison to suitable experimental data. This paper presents detailed particle image velocimetry (PIV) measurements of the flow issuing from the turbulence generating plates (TGP) inside a glass nozzle. The resulting data is analyzed in terms of first and second moments, time-series, frequency spectra and phase averages. The measurements show how individual high velocity jets emerging from the TGP interact and recirculation zones are formed behind the solid parts of the TGP. Vortex shedding is observed in the jet’s shear layer were high levels of turbulent kinetic energy are generated. Time series measurements revealed periodic pulsations of the individual jets and implied a coupling between adjacent jets. The peak frequencies were found to be a function of the Reynolds-number.  相似文献   

14.
Based on the steady hydrodynamic equations, a multilayer (ML) model has been formulated for simulating turbulent flow in open channels. The model is imposed on a general curvilinear co-ordinate system with non-staggered finite volume discretization. The turbulent quantities in the model are described by the layer-averaged K-ε turbulence model with standard coefficients. Assuming a vertical hydrostatic pressure distribution, a depth correction scheme, originating in the Rhie and Chow approach for confined flows, is incorporated into the SIMPLE procedure to compute the water surface. Using the multilayer model, flows in a 180° channel bend, near a groin, and in straight open channels are computed. The results are compared with experimental data and with calculations of a depth-averaged model (DAV) having three-dimensional effect corrections. The comparisons show that the predictions of the ML model on mean flow values are in good agreement with the available data and are better than those of the DAV model. The vertical distribution of the turbulent energy dissipation rate is also shown to agree well with the open-channel measurements.  相似文献   

15.
Particle image velocimetry (PIV) data have been acquired using three different experimental configurations in the far-field of the interaction created by a transverse supersonic jet exhausting from a flat plate into a transonic crossflow. The configurations included two-component PIV in the centerline streamwise plane at two overlapping stations, as well as stereoscopic PIV in both the same streamwise plane and in the crossplane. All measurement planes intersected at a common line. Data from both two-component measurement stations and the stereoscopic streamwise configuration agreed to within the estimated uncertainty, but data from the crossplane exhibited reduced velocity and turbulent stress magnitudes by a small but significant degree. Subsequent reprocessing of the data in nominally the same manner using a newer software package brought all values into close agreement with each other, but produced substantially higher turbulent stresses. The error source associated with the choice of software was traced to the use of image deformation in the newer software to treat velocity gradients, which is shown by synthetic PIV tests to yield a more accurate result for turbulence measurements even for gradients within the recommended limits for classical PIV. These detailed comparisons of replicate data suggest that routine methods of uncertainty quantification used for a turbulent PIV experiment may not fully capture the actual error sources.  相似文献   

16.
We investigated the flow field in a turbulent boundary layer in a flume, by using Particle Image Velocimetry (PIV) and Hot-Foil Infrared Imaging (HFIRI) techniques. Coherent patterns in the flow were identified and characterized by using instantaneous velocity and temperature fields. The velocity fields in the streamwise–spanwise plane were measured in parallel to the temperature distribution of the flume bottom. The identified patterns are represented by means of their spatial characteristics – a non-dimensional spatial separation between streamwise patterns, +.  相似文献   

17.
A numerical finite volume prediction method for arbitrary-shaped passages has been applied to the case of fully developed axial turbulent flow past a rod eccentrically placed in a circular tube. The numerical method was based on an orthogonal curvilinear mesh and employed an algebraic stress transport model to calculate the full three-dimensional velocity field directly from the governing partial differential equations. This study is one of a series of applications of this prediction method to a range of different non-circular passages that have been made in order to establish the capabilities and usefulness of this type of procedure. The present eccentric rod case was the subject of a comprehensive experimental investigation by Kacker1 which has enabled a detailed comparison to be made between the present predictions and the measurements. This comparison included local distributions of axial velocity, wall shear stress and secondary velocities; and although found to be satisfactory overall, some differences in detail revealed possible shortcomings in the measurement of secondary flow. This, together with other previously reported cases, indicates, that, although the present method cannot be expected to replace experiment in providing turbulent passage flow data, it has an important role to play in interpreting and supplementing experiments.  相似文献   

18.
19.
A method of efficiently computing turbulent compressible flow over complex two-dimensional configurations is presented. The method makes use of fully unstructured meshes throughout the entire flow field, thus enabling the treatment of arbitrarily complex geometries and the use of adaptive meshing techniques throughout both viscous and inviscid regions of the flow field. Mesh generation is based on a locally mapped Delaunay technique in order to generate unstructured meshes with highly stretched elements in the viscous regions. The flow equations are discretized using a finite element Navier-Stokes solver, and rapid convergence to steady state is achieved using an unstructured multigrid algorithm. Turbulence modelling is performed using an inexpensive algebraic model, implemented for use on unstructured and adaptive meshes. Compressible turbulent flow solutions about multiple-element aerofoil geometries are computed and compared with experimental data.  相似文献   

20.
Open-cavity flows are known to exhibit a few well-defined peaks in the power spectral distribution of velocity or pressure signals recorded close to the impinging corner. The measured frequencies are in fact common to the entire flow, indicating some global organisation of the flow. The modal structures, i.e. the spatial distribution of the most characteristic frequencies in the flow, are experimentally investigated using time-resolved particle image velocimetry. Each spatial point, of the resulting two-dimension-two-component (2D–2C) velocity fields, provides time-resolved series of the velocity components V x and V y , in a (xy) streamwise plane orthogonal to cavity bottom. Each local time-series is Fourier-transformed, such as to provide the spectral distribution at any point of the PIV-plane. One finally obtains the spatial structure associated with any frequency of the Fourier spectrum. Some of the modal spatial structures are expected to represent the nonlinear saturation of the global modes, against which the stationary solution of the Navier–Stokes equations may have become linearly unstable. Following Rowley et al. (J Fluid Mech 641:115–127, 2009), our experimental modal structures may even correspond to the Koopman modes of this incompressible cavity flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号