共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated the plastic deformation properties of single-phase Zr–Nb–Ti–Ta–Hf high-entropy alloys from room temperature (RT) up to 300 °C. Uniaxial deformation tests at a constant strain rate of 10?4?s?1 were performed, including incremental tests such as stress relaxations, strain-rate changes, and temperature changes in order to determine the thermodynamic activation parameters of the deformation process. The microstructure of deformed samples was characterized by transmission electron microscopy. The strength of the investigated Zr–Nb–Ti–Ta–Hf phase is not as high as the values frequently reported for high-entropy alloys in other systems. At RT we measure a flow stress of about 850 °C. We find an activation enthalpy of about 1 eV and a stress dependent activation volume between 0.5 and 2 nm3. The measurement of the activation parameters at higher temperatures is affected by structural changes evolving in the material during plastic deformation. 相似文献
2.
Young Won KimJung Yul Yoo 《Optics and Lasers in Engineering》2012,50(1):87-98
Transport of particles is commonly encountered in microfluidic channels that deal with solid-liquid two-phase flows in conjunction with particles and cells to focus, separate, sort, extract, and filter them. In particular, there is a resemblance between microscale flows and macroscale flows in the sense that the inertial migration of particles cannot be neglected. Thus, the objective of the present article is to review how studies on the transport of solid particles have evolved from classical fluid dynamics to up-to-date microfluidics in view of measurement techniques, flow characteristics, and applications. 相似文献
3.
4.
Abstract Classical meso-scale models for dislocation–obstacle interactions have, by and large, assumed a random distribution of obstacles on the glide plane. While a good approximation in many situations, this does not represent materials where obstacles are clustered on the glide plane. In this work, we have investigated the statistical problem of a dislocation sampling a set of clustered point obstacles in the glide plane using a modified areal-glide model. The results of these simulations show two clear regimes. For weak obstacles, the spatial distribution does not matter and the critically resolved shear stress is found to be independent of the degree of clustering. In contrast, above a critical obstacle strength determined by the degree of clustering, the critical resolved shear strength becomes constant. It is shown that this behaviour can be explained semi-analytically by considering the probability of interaction between the dislocation line and obstacles at a given level of stress. The consequences for alloys exhibiting solute clustering are discussed. 相似文献
5.
Hardness and slip systems by an indentation method were investigated on different habit planes of orthorhombic hen egg-white lysozyme (O-HEWL) crystals containing water. A dependence of the hardness on the water-evaporation time exhibits three stages as incubation, transition and saturated ones, as tetragonal (T)-HEWL crystals reported previously. The hardness values of (1 1 0), (0 1 0) and (0 1 1) habit planes of O-HEWL in the incubation stage or wet condition exhibits 6, 8 and 10 MPa, respectively. The hardness depends on indented planes but it is independent of the air-humidity and crystal volumes. These values correspond to the intrinsic hardness for O-HEWL crystals containing water. In the incubation stage, the slip traces are clearly observed around the indentation mark and the corresponding six kinds of slip systems are identified to be {0 1 1}<1 0 0>, {1 1 0}<1 1 0>, {0 1 1}<0 1 1>, {1 1 0}<0 0 1>, {1 0 0}<0 0 1> and {0 1 0}<0 0 1>. 相似文献
6.
Based on a limited energy storage viewpoint proposed by our team, it is assumed that there is a maximum constant value for the maximum storage of energy per unit volume when dislocation slip starts in a metal. A temperature-dependent critical resolved shear stress (CRSS) model without any fitting parameters is developed for metals in a pure shear mode. The CRSSs of Cu, Cu–Au, Cu–Co and Cu–Au–Co in the pure shear mode are predicted, and are in excellent agreement with the experimental results. This work offers an approach to predict the temperature-dependent CRSS for metals in the pure shear mode. 相似文献
7.
The thermally induced fcc → dhcp martensitic phase transformation was investigated in two different CoFe alloys (Co-5.75 and 6.0at.% Fe). Analysis by transmission electron microscopy methods yields that in both alloys the transformation proceeds by the movement of transformation dislocations (partials) that are correlated on an atomic scale; partials on adjacent close packed planes interact and combine to a paired partial. Two different and competitive modes of the transformation were observed. In Co-6.0 at. % Fe all the paired partials have the same Shockley partial Burgers vector adding up their long-range strain fields (transformation mode A). Contrary to this, in Co-5.75 at.%Fe paired partials of different Burgers vectors are compensating their long-range strain fields on an atomic scale (transformation mode B). The mode of the transformation seems to depend on both the parameters of the material and the experimental conditions. 相似文献
8.
AbstractThe evolution of dislocation density and microstructure of a hot rolled Zr–2.5Nb alloy under compressive plastic strain, at room temperature, was analysed using neutron diffraction and transmission electron microscopy (TEM). The dislocation densities of type 〈a〉, 〈c + a〉 and 〈c〉 dislocations at different plastic strains in the elastic–plastic transition regime and plastic regime have been measured by diffraction line profile analysis (DLPA). TEM microstructure characterization revealed the operation of different slip systems. It has been found that slip of type 〈a〉 dislocations contributed to most of the plastic strain at the early stage of deformation, and strong pyramidal 〈c + a〉 slip did not occur until the deformation was fully plastic. Unambiguous evidence of basal slip occurring at room temperature in Zr is provided. Loading along a plate direction with more basal poles favoured the operation of basal and pyramidal slip. Dislocation features including relative edge:screw character of 〈c + a〉 dislocations are shown to be different under tension and compression loading, providing a mechanistic driver for the previously observed asymmetry in critical resolved shear stress for 〈c + a〉 slip. 相似文献
9.
为体现固溶体合金中的溶质原子产生的化学短程序,文章提出了配位数为14的团簇在体心立方(bcc)点阵中的堆垛模式,并建立了基于bcc结构的"团簇+连接原子"结构模型,用团簇成分式[团簇](连接原子)x表述. 此模型中,与基体组元具有相对大的负混合焓的溶质原子占据团簇心部,其他原子作为连接或者替代团簇壳层基体原子. 1 ∶1结构模型[团簇](连接原子)1由于最大程度地保证了团簇与连接原子的近邻,构成了连接原子最有效的合金化方式. 在两个实用bcc固溶体合金体系中, 1 ∶1模型指导设计了低V含量的储氢合金 V1和低弹性模量高强度的 Nb1合金.
关键词:
体心立方固溶体成分设计
"团簇+连接原子"结构模型
Ti-Cr-V合金
Ti-Zr-Mo-Nb合金 相似文献
10.
11.
Fracture of solid state materials is considered based on a gauge theoretical approach. The critical condition in which a material is about to fracture is defined. This condition is analogous to the condition of the electric breakdown of a gas. Supporting experimental results are presented. 相似文献
12.
A correct solution for a dislocation atmosphere is provided using Hirth's Standard Model, confirming the errors in Hirth and Lothe. Contrary to what is given there, concentration changes in Cottrell atmospheres reduce an edge dislocation's stress and its elastic energy, thereby reducing the magnitude of the concentration changes. The chemical and elastic strain fields from Cottrell atmospheres are again shown to behave as partial dislocations with variable Burgers vectors that are not crystal translation vectors. The reality of partial dislocations provides a simpler explanation for pinning of dislocations by atmospheres. Much of the literature on dislocation properties in solid solutions should be re-examined. 相似文献
13.
14.
15.
16.
部分重力条件下气液两相流型研究 总被引:2,自引:0,他引:2
本文分析了“和平号”空间站气液两相流实验中获得的部分重力(0.1g和0.014g)条件下的流型特征及其相互转换条件,并将其和常重力与微重力两相流研究中较常用的流型转换模型的预测结果进行了比较。 相似文献
17.
集输管路上升管系统严重段塞流实验和理论模拟 总被引:8,自引:2,他引:8
严重段塞流的实验研究表明,在气泡进入上升管底部到运动至出口的过程中,上升管中气泡头部以下流型为弹状流型;当气泡头部流出上升管后,上升管中的流型可看作块状流型。根据实验结果,本文提出了采用漂移流模型简化计算上升管中两相流动、上游管道中气体膨胀满足质量守恒,同时考虑上升管内液体动量守恒的严重段塞流计算模型。计算值与测量值比较表明,模型可以正确预测出气体膨胀流动过程,气体流动时间不受入口气液流量的影响。模型可以准确计算出严重段塞流周期、液塞长度和倾斜管中液柱最大长度等参数。 相似文献
18.
We propose a hybrid scheme for computations of incompressible two-phase flows. The incompressible constraint has been replaced by a pressure Poisson-like equation and then the pressure is updated by the modified marker and cell method. Meanwhile, the moment equations in the incompressible Navier-Stokes equations are solved by our semidiscrete Hermite central-upwind scheme, and the interface between the two fluids is considered to be continuous and is described implicitly as the 0.5 level set of a smooth function being a smeared out Heaviside function. It is here named the hybrid scheme. Some numerical experiments are successfully carried out, which verify the desired efficiency and accuracy of our hybrid scheme. 相似文献
19.
20.
The plastic properties of an aluminium alloy are defined by its microstructure. The most important factors are the presence of alloying elements in the form of solid solution and precipitates of various sizes, and the crystallographic texture. A nanoscale model that predicts the work-hardening curves of 6xxx aluminium alloys was proposed by Myhr et al. The model predicts the solid solution concentration and the particle size distributions of different types of metastable precipitates from the chemical composition and thermal history of the alloy. The yield stress and the work hardening of the alloy are then determined from dislocation mechanics. The model was largely used for non-textured materials in previous studies. In this work, a crystal plasticity-based approach is proposed for the work hardening part of the nanoscale model, which allows including the influence of the crystallographic texture. The model is evaluated by comparison with experimental data from uniaxial tensile tests on two textured 6xxx alloys in five temper conditions. 相似文献