首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have demonstrated what we believe to be the first mid-infrared optical parametric oscillator (OPO) pumped directly by a pulsed Tm-doped fiber laser. The Tm-fiber pump laser produces 30 ns pulses with a repetition rate of 30 kHz at a wavelength of 2 microm. The ZnGeP2 (ZGP) OPO produces 20 ns mid-IR pulses in the 3.4-3.9 microm and 4.1-4.7 microm spectral regions simultaneously. More than 658 mW of mid-IR output power has been generated with a total OPO slope efficiency greater than 35%.  相似文献   

2.
Coupled tandem optical parametric oscillator (OPO): an OPO within an OPO   总被引:9,自引:0,他引:9  
Phua PB  Lai KS  Wu RF  Chong TC 《Optics letters》1998,23(16):1262-1264
We have demonstrated, for the first time to our knowledge, a coupled tandem optical parametric oscillator (OPO) configuration in which a second ZnGeP(2) OPO is placed within the resonator of the first, KTiOPO(4), OPO. A significant enhancement in the overall cascaded efficiency of this OPO compared with standard two-stage OPO's was observed. With a multimode Nd:YAG laser, an overall optical-to-optical efficiency (from 1.06 microm to the mid IR) of 5.2% was obtained from operating only ~1.4 times above oscillation threshold. The measured overall slope efficiency was attractively high at 35%. With a single set of mirrors we obtained a broad wavelength-tuning range from 2.7 to 8 microm.  相似文献   

3.
A ring-cavity synchronously-pumped optical parametric oscillator (OPO) is investigated based on periodically poled KTi:OPO4 (PPKTP). The wavelength of the signal wave covers from 1 000 to 1500 nm, the output power is 32.3 mW, and idler wave spectrum range from 1 800 to 2 500 nm is detected. By inserting a BBO or BIBO crystal respectively, a stable and adjustable range from 450 to 650 nm light is obtained. Three to six wavelengths can be output simultaneously.  相似文献   

4.
He G  Guo J  Jiao Z  Wang B 《Optics letters》2012,37(8):1364-1366
We demonstrate a high-efficiency near-degenerate periodically poled MgO:LiNbO(3) (PPMgLN) optical parametric oscillator (OPO) using a volume Bragg grating (VBG) output coupler (OC) pumped by a multilongitudinal Q-switched Nd:YVO(4) laser at 20 kHz repetition rate. A total parametric power of 4.3 W with a conversion efficiency of 60% is achieved in a double-pass pump configuration. The output power improvement over the case of a single-pass pump is nearly 60%. Both the signal and the idler bandwidths are less than 40 GHz and are confined within 170 GHz bandwidth at 2128.8 nm. Such efficiency is, to our knowledge, the highest ever achieved from a degenerate OPO using a VBG OC.  相似文献   

5.
Efficient conversion into the mid-IR of a low pulse-energy (2.5 mJ) Nd:YAG laser is achieved by cascaded KTiOPO4 (KTP) and ZnGeP2 (ZGP) optical parametric oscillators followed by a ZGP optical parametric amplifier. The first stage 2.13 μm degenerate KTP OPO uses four KTP crystals in a walk-off compensated geometry and an elliptical pump beam focal geometry to produce up to 2.2 W from 6.3 W incident. The 2.13 μm e-ray pumps a Type-I ZGP OPO, which produces 0.5 W of light in the 3.8-4.8 μm spectral region that in turn is amplified by a 2.13 μm o-ray pumped optical parametric amplifier generating 0.84 W with an M2 of <2.  相似文献   

6.
We demonstrate, for the first time to our knowledge, an optical parametric amplifier directly pumped by a femtosecond oscillator. Wavelength-tunable pulses in the ranges 0.65-0.85 microm (signal) and 1.4-2.5 microm (idler) are generated at a repetition frequency of 1 MHz. For pumping the beta-barium borate crystal we use a microjoule Yb:KY(WO4)2 femtosecond oscillator with cavity dumping. Pulses with 30 nJ of energy and a duration of 16 fs are achieved from a supercontinuum seed generated in a sapphire plate.  相似文献   

7.
A tandem optical parametric oscillator (OPO) is used to convert radiation from 1.064 microm to the mid-infrared. Spectral bandwidth narrowing close to 80 times compared with a conventional cavity was achieved by using a bulk Bragg grating as an outcoupler in a near-degenerate periodically poled KTiOPO(4) OPO. The narrowed 2,008 nm radiation was subsequently used for pumping the ZnGeP(2) OPO, which was tunable between 3.3 and 5.2 microm. Pulse energies of 170 microJ and pump depletion close to 70% were obtained in the ZnGeP(2) OPO. To our knowledge this is the first time the output from a near-degenerate type I PPKTP OPO has been used for ZnGeP(2) OPO pumping.  相似文献   

8.
We report the development of a compact, tunable synchronously pumped photonic crystal fiber (PCF)-based optical parametric oscillator (FOPO). The oscillator is pumped using a gain-switched laser diode producing 220?ps pulses around 1062?nm, amplified in a ytterbium doped amplifier to peak powers of 3.5?kW. The FOPO produces anti-Stokes pulses at wavelengths between 757 and 773?nm, with durations of 150?ps at average output powers exceeding 290?mW. The output slope efficiency of the device varies with output wavelength from 1.9 to 6.0%.  相似文献   

9.
By recording low-pressure absorption lines of N2O around 3.9 microm, we fully qualify a pulsed entangled-cavity doubly resonant optical parametric oscillator as a power tool for high-resolution spectroscopy. This compact source runs at a high repetition rate (>10 kHz) with a low threshold of oscillation (<8 microJ), is mode-hop-free tunable over 5 cm(-1), and displays single-frequency Fourier-transformed-limited operation (linewidth <0.005 cm(-1)). A high potential for nonlinear spectroscopy is also expected given the high peak power (70 W) and the good quality (M2 < 2) of the output beam.  相似文献   

10.
We report on what is believed to be the first singly resonant cw optical parametric oscillator (SRO) that is directly pumped by a diode laser. The SRO consists of a 38-mm-long periodically poled LiNbO(3) crystal in a four-mirror signal-resonant ring cavity. Pumped by 2.5 W of 925-nm diode-laser radiation, the SRO generates 480 mW of single-frequency idler radiation at 2.1mum . The wavelengths of the signal and the idler output are tuned in the ranges of 1.55 to 1.70mum and 2.03 to 2.29mum, respectively, by tuning the wavelength of the diode laser from 924.0 to 925.4 nm.  相似文献   

11.
We report on what is to our knowledge the first optical parametric oscillator (OPO) pumped by microsecond pulses from a wavelength-tunable solid-state laser. The singly resonant OPO (SRO) is based on a periodically poled LiNbO3 crystal and pumped with 2.1-micros-long pulses from an actively Q-switched Yb fiber laser. At an average fiber laser power of 3.6 W, the SRO generates 1.9-micros-long pulses with a repetition rate of 25 kHz and an average power of 560 mW at 3360 nm. The SRO was tuned from 1518 to 1634 nm (signal) and from 3145 to 3689 nm (idler) via the crystal temperature and poling period. By all-electronic tuning of the fiber laser wavelength over 19 nm, tuning of the mid-infrared idler wavelength over 195 nm was achieved.  相似文献   

12.
We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a four-mirror ring cavity. By tuning of the fiber-laser wavelength over 33 nm through an intracavity acousto-optic tunable filter, the OPO idler wavelength is tuned from 3160 to 3500 nm in 330 micros, corresponding to an idler frequency-tuning speed of 28 THz/ms. At a fiber-laser power of 6.6 W at 1074 nm, the singly resonant OPO generates 1.13-W cw idler radiation at 3200 nm.  相似文献   

13.
We report a ZGP OPO system capable of producing >6 W at a signal wavelength of 3.80 μm and an idler wavelength of 4.45 μm. The pumping source is the Tm,Ho:GdVO4 laser operated at 2.049 μm with an M 2 of 1.07. The ZGP OPO generated a total combined output power of 6.1 W at signal wavelength and idler wavelength under pumping power of 18.3 W, and an M 2 of 1.7 for OPO output was obtained.  相似文献   

14.
We report an efficient optical parametric oscillator (OPO) of dual idler wave output based on periodically poled MgO:LiNbO3 with a periodically-phase-reversed grating structure, which is pumped by a Q-switched 1.064 μm laser with a repetition rate of 50 kHz. 0.98 W of dual idler-waves at 3.824 μm and 3.731 μm is achieved at room temperature, leading to a 12.9% conversion efficiency. The crystal temperature tuning provides output tunability of the dual idler wavelengths. In addition, the sum frequency generation of the dual signal waves is simultaneously observed in the OPO cavity.  相似文献   

15.
A femtosecond optical parametric oscillator synchronously pumped by a Ti:Sapphire oscillator is reported. By the cavity length tuning, the signal wavelength is continuously tuned from 1000 to 1200 nm. The average output power of 32 mW is obtained at 1053 nm. The pulse width is measured to be 342 fs by intensity autocorrelation method. In addition, we observed bichromatic emission during the cavity length tuning process. Supported by the National High Technology Program Research and Development Program of China, the National Natural Science Foundation of China (Grant Nos. 60490280 and 10804128), and the National Basic Research Program of China (Grant No. 2007CB815104)  相似文献   

16.
A continuous-wave pumped, all-fiber optical parametric oscillator (OPO) around 1523 nm based on the mixing interaction of parametric process and stimulated Raman scattering (SRS) effects are investigated in this paper. We study and give the detailed analysis of the generation and output characteristics of all-fiber OPO with the influence of the SRS effects. Experimental results show that there exists the saturation output effect for this kind of OPO due to the coexistence of first order SRS effect, second order SRS and the optical parametric oscillation. The maximal output power of OPO is about 100 mW as the pump power reaches 1.4 W. Furthermore, a depolarized L-band super-continuum light source from 1570 nm to 1640 nm based on the combined interaction of parametric process and SRS effects can also be obtained.  相似文献   

17.
Bidirectional, synchronously pumped, ring optical parametric oscillator   总被引:1,自引:0,他引:1  
We report the operation of a bidirectional femtosecond pulsed ring optical parametric oscillator based on periodically poled lithium niobate, pumped alternately with nonsimultaneous pulses from a Ti:sapphire mode-locked laser. A beat note between the two counterpropagating beams attests to a gyro response without dead band. The sensitivity of the device to differential phase changes is demonstrated by measurement of the nonlinear index of lithium niobate.  相似文献   

18.
A femtosecond all-fiber laser source incorporating a cw mode-locked Yb-doped silica fiber oscillator and amplifier has been used to synchronously pump an optical parametric oscillator based on periodically poled lithium niobate. The signal output, consisting of 330-fs pulses at a 54-MHz repetition rate and average powers up to 90 mW, was tuned from 1.55 to 1.95microm , with a corresponding idler range of 2.30-3.31microm .  相似文献   

19.
The performance characteristics of a doubly (signal and idler) resonant continuous-wave optical parametric oscillator based on periodically poled lithium niobate and pumped by a 100-mW single-mode laser diode at 810 nm are reported. Pump power thresholds as low as 16 mW and wavelength tuning over the range 1.15-1.25 microm at the signal and 2.31-2.66 microm at the idler were achieved through variation of crystal temperature, pump wavelength, and grating period. Up to 5 mW of signal output was obtained with the single-mode diode pump, and signal powers of up to 39 mW were obtained when pumping with a 400-mW injection-locked broad-area diode laser.  相似文献   

20.
We report on a passively Q-switched end pumped Nd:YLF laser including a noncritically phase-matched KTP singly resonant intracavity optical parametric oscillator (IOPO-KTP). For the Q-switching operation we have used Cr:YAG saturable absorber. The optimized passively Q-switched Nd:YLF laser without IOPO generated linearly polarized pulses of 11.5 ns and 1.07 mJ at 1047 nm. The conversion efficiency of the optimized Q-switched pulse energy at 1047 nm to 1547 nm of a signal approached about 47%. For optimizing both Nd:YLF laser and IOPO we have numerically solved a theoretical model. We have achieved 1.6-ns duration pulses at 1547 nm with energy of 0.5 mJ and peak power of above 300 kW. The beam quality was excellent (M2 ≈1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号