首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under solvent-free conditions, syntheses of 2-aryl-4-(4-β-D-allopyranosyloxyphenyl)-4,6,7,8tetrahydroquinolin-5(1H)-one derivatives were carried out from chalcone (2a–2e), cyclohexane-1,3-dione (3), and NH4OAc in excellent yield without using any catalysts. The structure of the new compounds were characterized by 1H NMR, IR, and HR-MS spectroscopy. The preliminary bioassay tests of 4a–4j indicated that compounds 4b, 4e, and 4f exhibited potent sedative and hypnotic activity.  相似文献   

2.
李悦生 《高分子科学》2011,29(5):627-633
Mono salicylaldiminato vanadium(Ⅲ) complexes(1a-1f)[RN = CH(ArO)]VCl2(THF)2(Ar = C6H4(1a-1e),R = Ph,1a;R = p-CF3Ph,1b;R = 2,6-Me2Ph,1c;R = 2,6-iPr2Ph,1d;R = cyclohexyl,1e;Ar = C6H2tBu2(2,4),R = 2,6-iPr2Ph, 1f) and bis(salicylaldiminato) vanadium(Ⅲ) complexes(2a-2f)[RN = CH(ArO)]2VCl(THF)x(Ar = C6H4(2a-2e),x = 1 (2a-2e),R = Ph,2a;R =p-CF3Ph,2b;R = 2,6-Me2Ph,2c;R = 2,6-iPr2Ph,2d;R = cyclohexyl,2e;Ar = C6H2tBu2(2,4),R = 2,6-iPr2Ph,x = 0,2f) have been evaluated as the active catalysts for ethylene/1-hexene copolymerization in the presence of Et2AlCl.The ligand substitution pattern and the catalyst structure model significantly influenced the polymerization behaviors such as the catalytic activity,the molecular weight and molecular weight distribution of the copolymers etc.The highest catalytic activity of 8.82 kg PE/(mmolV·h) was observed for vanadium catalyst 2d with two 2,6-diisopropylphenyl substituted salicylaldiminato ligands.The copolymer with the highest molecular weight was obtained by using mono salicylaldiminato vanadium catalyst 1f having ligands with tert-butyl at the ortho and para of the aryloxy moiety.  相似文献   

3.
Diacetylplatinum(II) complexes [Pt(COMe)2(N^N)] (N^N = bpy, 3a; 4,4′-t-Bu2-bpy, 3b) were found to undergo oxidative addition reactions with organyl halides. The reaction of 3a with methyl iodide and propargyl bromide led to the formation of the cis addition products (OC-6-34)-[Pt(COMe)2(R)X(bpy)] (R = Me, X = I, 4a; CH2C≡CH, X = Br, 4k). Analogous reactions of 3a with ethyl iodide, benzyl bromide, and substituted benzyl bromides, 3-(bromomethyl)pyridine, 2-(bromomethyl)thiophene, allyl bromide, and cyclohex-2-enyl bromide led to exclusive formation of the trans addition products (OC-6-43)-[Pt(COMe)2(R)X(bpy)] (X = I, R = Et, 4b; X = Br, R = CH2C6H5, 4c; CH2C6H4(o-Br), 4d; CH2C6H4(p-COOH), 4e; CH2-3-py (3-pyridylmethyl), 4f; CH2-2-tp (2-thiophenylmethyl), 4g; CH2CH=CH2, 4h; c-hex-2-enyl (cyclohex-2-enyl), 4i). All complexes 4 were characterized by microanalysis, 1H and 13C NMR and IR spectroscopy. Additionally, complexes 4a, 4f, and 4g were characterized by single-crystal X-ray diffraction analyses. Reactions of 3a and 3b with o-, m- and p-bis(bromomethyl)benzene, respectively, led to the formation of dinuclear platinum(IV) complexes [{Pt(COMe)2Br(N^N)}2-{μ-(CH2)2C6H4}] (5). These complexes were characterized by microanalysis, IR spectroscopy, and depending on their solubility by 1H and 13C NMR spectroscopy, too. A single-crystal X-ray diffraction analysis of complex [{Pt(COMe)2Br(bpy)}2{μ-m-(CH2)2C6H4}] (5b) confirmed its dinuclear composition. The solid-state structures of 4a, 4f, 4g, and 5b are discussed in terms of C–H···O and O–H···O hydrogen bonds as well as π–π stacking between aromatic rings.  相似文献   

4.
The synthesis and crystal structures of the clusters M3(AuPPh3)(C≡CFc)(CO)9 (M=Ru,3a; or M=Os,3b) are described. Compound3a was synthesized by deprotonation of Ru3H(C≡CFc)(CO)9 under the action of KOH/EtOH followed by treatment of the anionic complex [Ru3(C≡CFc)(CO)9] with chloro(triphenylphosphine)gold. Compound3b was prepared by the reaction of Os3(CO)10(NCMe)2 with FcC≡CAuPPh3, which was synthesized by the reaction of FcC≡CNa with ClAuPPh3. The pentanuclear cluster Ru4(AuPPh3)(C≡CFc)(CO)12 (4a), which was prepared by the reaction of3a with Ru3(CO)12, was characterized by spectral methods. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1295–1299, July, 2000.  相似文献   

5.
The main regularities of the reactions of 1-haloalkynes RC≡CX with carbonylmetallate anions [(η5-C5R′5)(CO)3M] (R′ = H (1–3),, M=Cr (1), M=Mo (2), or M=W (3); R′ =Me (4–6), M=Cr (4), M=Mo (5), or M=W (6) were revealed. It was established that the first stage of the reactions of anions1–6 with bromo- or iodoalkynes RC≡CX (X=Br or I) involved the transfer of the halogen atom from the sp-hybridized carbon atom to the transition metal atom to form carbonyl halides [(η5-C5R′5)(CO)3MX. To the contrary, the reactions of anions1–6 with chloroalkynes RC≡CCl proceeded selectively as a nucleophilic substitution at the unsaturated carbon atom, the reaction rate being governed by the nucleophilicity of the carbonylmetallate anions and the electron-withdrawing ability of the R group. These reaction paths are consistent with the structures of the lowest unoccupied molecular orbitals (LUMO) in the PhC≡CX molecules (X=Cl, Br, or I) calculated by the MNDO/PM3 method. In the case of the reactions of 1-chloroheptyne-1 C1C≡CC5H11 n, anions1–3 appeared to be insufficiently nucleophilic, but these reactions can be performed as cross-coupling of the carbonylmetallate anions with chloroalkynes catalyzed by palladium complexes. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1176–1184, June, 1999.  相似文献   

6.
The molecular and crystal structures of N≡C-C6H4-C6H4-O-(CH2)8-O-CO-CH=CH2 (4(3-acryloyloxy)octyloxy-4′-cyanobiphenyl) (I) and N≡C-C6H4-C6H4-O-(CH2)6-O-CO-CH=CH2 (4(3-acryloyloxy)hexyloxy-4′-cyanobiphenyl) (II) were determined by X-ray diffraction. The structures of I and II are stereotype. The space group of I and II is C2/c, Z = 8; lattice parameters I: a = 34.677(7)?, b = 9.452(2)?, c = 13.004(3) ?, β = 99.30(3)°; II: a = 30.858(6) ?, b = 9.504(2) ?, c = 13.082(2) ?, β = 92.78(3)°. The planar extended molecules I and II are packed in the unit cell to give clearly differentiated aliphatic and aromatic regions throughout the whole crystal. All intermolecular contacts are concentrated in the aromatic region. The molecular packing is very loose but the aromatic areas of I and II fully coincide. The only free parameter of the structure is the length of the aliphatic chain (CH2)n (n = 8 and 6). According to DSC data, compound I possesses enantiotropic mesomorphism and II possesses monotropic mesomorphism.  相似文献   

7.
Liquid crystals based on substituted 2,5‐diaryl‐1,3,4‐thiadiazole derivatives (1a1f, 3a and 3b) and 1,3,4‐oxadiazole analogues (2a2f, 4a and 4b) were synthesised and characterised by 1H, 13C nuclear magnetic resonance, Fourier transform infrared, mass spectrometry, high‐resolution mass spectrometry techniques and elemental analyses. The X‐ray crystal structure of 1e revealed that it contains tilted lamellar arrangement of molecules in the crystalline solid. The liquid crystal properties have been investigated by polarised‐light optical microscopy, differential scanning calorimetry and in‐situ variable‐temperature X‐ray diffraction. All compounds (except 2e and 2f) exhibited thermotropic liquid crystal behaviours with various mesophases (smectic A and C, nematic N or soft crystal E phases). Notably, the 1,3,4‐thiadiazole derivatives consistently have wider mesomorphic temperature ranges than those of the respective 1,3,4‐oxadiazole analogues. The solutions of all compounds in CH2Cl2 individually displayed one or two absorption bands with λ max values at 297–355 nm and emitted with λ max values at 363–545 nm and quantum yields of 0.12–0.73. Structure–property relationships of these compounds are discussed in the contexts of their molecular structures and weak intermolecular interactions.  相似文献   

8.
New esters of 1,4-cubanedicarboxylic acid, 1,4-(ROCO)2C8H6 (R=Et (3a), Pr (3b), CMe3 (3c), C6H13 (3d), CH2CF3 (3e), or CH(CF3)2 (3f) were synthesized. The structures of esters3a, 3b, 3e, and3f were established by X-ray diffraction analysis. The cubane framework of compound3b is somewhat distorted, whereas the C−C bond lengths and bond angles in the other compounds remain virtually ideal. For Part 1, see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 457–462, March, 1998.  相似文献   

9.
Several new gold-containing cluster complexes have been prepared from the reactions of gold alkynyl complexes, L n M-C x -Au(PPh3), (x = 3, 4, 6) with Ru3(CO)10(NCMe)2. The bis-cluster complex 1,4-{AuRu3(CO)9(PPh3)(μ3-C2)}2C6H4 was obtained from Ru3(CO)10(NCMe)2 and 1,4-{(Ph3P)Au(C≡C)}2C6H4. The complexes Ru3(μ-H){μ3-C2C≡C[Ru(PP)Cp′]}(CO)9 [PP = (PPh3)2, Cp′ = Cp; PP = dppe, Cp′ = Cp*] were also obtained as minor by-products and synthesised independently from Ru(C≡CC≡CH)(PP)Cp′. A reaction between Co33-CC≡CC≡CAu(PPh3)}(μ-dppm)(CO)7 and Ru3(CO)12 afforded {(Ph3P)(OC)9AuRu3}C≡CC≡CC{Co3(μ-dppm)(CO)7} 7. Related complexes AuRu33-C2C≡[M(CO)2Tp]}(CO)9(PPh3) (M = Mo 8, W 9) were obtained from {Tp(OC)2M}≡CC≡C{Au(PPh3)}, while the mixed metal cluster complexes MoM2(C2Me)(CO)8Tp (M = Ru 13, Fe 14) were obtained from M(≡CC≡CSiMe3)(CO)2Tp (M = Mo, W) with Fe2(CO)9 and Ru3(CO)12, respectively. Reactions of the Mo carbyne complex with Co2(LL)(CO)6 [LL = (CO)2, μ-dppm] or nickelocene afforded complexes 15–17 in which Co2 and Ni2 fragments, respectively, had coordinated to the C≡C triple bond. XRD structural determinations of 7, 8, 14, 16 and {Tp(OC)2W}≡CC≡CC≡{Co3(μ-dppm)(CO)7} (18-W) are reported. In memoriam: F. Albert Cotton (1930–2007).  相似文献   

10.
The alkali metal- and ammonium picrate extracting ability of d-glucose- and d-mannose-based 15-crown-5 ethers and related lariat ethers was investigated in dichloromethane – water system. A heteroatom was waried in the crown ether containing a 4,6-O-benzylidene-α-d-glucopyranoside unit 6, (X=O), 2 (X=S) and 8a (X=NH). Extracting ability of the latter species (8a) was excellent (97–99%) in regard of all cations (Li+, Na+, K+, Rb+, Cs+ and NH4+) examined, it was not, howewer, selective. Introduction of a side arm on the nitrogen atom of 8a decreased the extracting ability, but increased the selectivity. In this series of compounds (8bf, 4), 4 with a pyridylethyl substituent allowed the extraction of sodium picrate in 72%. The glucose-based macrocycles 8a, 8e and 8f formed a stronger complex with the cations examined than the mannose-based analogues 9a, 9e and 9f, that can be explained by the all-gauche conformation of the former ones. It was pointed out that in the case of crowns with tertiary amine moieties, the basicity increases the quantity of the picrates extracted. According to complex forming measurements by FAB-MS, the best sodium ion selectivity was achieved by the γ-hydroxypropyl substituted lariat ether (8e). Possible structures of the complexes formed by the two types of monosacharides with sodium cation were evaluated by molecule modelling calculations.  相似文献   

11.
The dimeric complex [{(η6-p-cymene)Ru(μ-Cl)Cl}2] (1) reacts with S,N-donor Schiff base ligands, para-substituted S-(thiophen-2-ylmethylene)phenylamines in methanol to give mononuclear amine complexes of the type [(η6-p-cymene)RuCl2(NH2–C6H4p-X)] {X?=?H (2a); X?=?CH3 (2b); X?=?OCH3 (2c); X?=?Cl (2d); Br (2e) X?=?NO2 (2f), respectively} by hydrolysis of the imine group of the ligand after coordination to the metal. The complexes were characterized by analysis and IR and NMR spectroscopy. The molecular structure of [(η6-C10H14)RuCl2(H2N–C6H4p-Cl)] (2d) was established by a single-crystal X-ray diffraction study.  相似文献   

12.
A procedure was developed for the synthesis of trinuclear cyclic (ZrIII)2—Al hydrides [(Cp2Zr)2(μ-H)](μ-H)2AlX2 (X = Cl (1a) or Br (1b)). These complexes were prepared in 60–65% yields by the reaction of Cp2ZrX2 with LiAlH4 in the presence of CoBr2 and tolane. The structures of complexes 1a and 1b and iodide 1c (X = I) were studied by NMR spectroscopy in solvents of different basicities (toluene, THF, and pyridine). Complex 1a is unsolvated and monomeric in all solvents; complex 1b, in toluene and THF; complex 1c, in toluene only. At room temperature, complex 1a does not catalyze hydrogenation of hex-1-ene and does not react with tolane, but reacts with the latter at high temperature to give bis(η5-cyclopentadienyl)-2,3,4,5-tetraphenylzirconacyclopentadiene. The reaction of equivalent amounts of complex 1a and HCl produces the [(Cp2Zr)2(μ-Cl)](μ-H)2AlCl2 complex. The structure of the latter was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2418–2423, November, 2005.  相似文献   

13.
Correlation times for≡SiOC·X2 radicals grafted onto activated silica surface were estimated to be 1.3·10−8s (X=H) and 2.5·10−8s (X=Me) at room temperature. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 613–616, April, 1998.  相似文献   

14.
In the MCl-CuCl-HOCH2C≡CCH2OH (M = Ca, C7H5N2H+2) system, the crystals of two anionic Ca[CuCl2(HOCH2C≡CCH2OH)]2-4H2O (1) and (BimH)[CuCl2(HOCH2C≡CCH2OH)] (2) (BimH+ is cation of benzimidazole-C7H5N2H+2) π-complexes are obtained and studied by single crystal X-ray diffraction Crystals of 1 are monoclinic: C2/c space group, a = 8.323(3) ?, b = 13.283(4) ?, c = 16.741(5) ?, β = 92.35(3)°, V = 1849.3(10) ?3, Z = 4; crystals of 2 are triclinic: P1 space group, a = 6.901(3) ?, b = 9.898(4)?, c = 9.987(4) ?, α = 94.91(3)°, β = 93.91(3)°, γ = 107.59(4)°, V = 644.7(5) ?3, Z = 2. Complex 1 consists of infinite bimetallic chains [Ca(H2O)4CuCl2(HOCH2C≡CCH2OH)2] forming a three-dimensional framework through (Ow)HCl and (C)O-HCl hydrogen bonds. Compound 2 is built from discrete anions [CuCl2(HOCH2C≡CCH2OH)]- paired by edge-to-edge packing in the [100] direction and large BimH+ cations with face-to-face packing. In both structures, the π-coordinated Cu(I) atom has the trigonal environment involving two Cl- anions and C≡C 2-butyne-1,4-diol bond (Cu-(C≡C) distance is 1.918(2) ? and 1.910(4) ? for 1 and 2 respectively).  相似文献   

15.
Silver-assisted aquation of bluecis-trans-cis-RuCl2(Raapm)2 (1a-1e) leads to the synthesis of solvento species, blue-violetcis-trans-cis-[Ru(OH2)2(Raapm)2](ClO4)2 [Raapm =p-R-C6H4-N=N-C4H3-NN, (2a-2e), abbreviated as N,N′-chelator, where N(pyrimidine) and N(azo) represent N and N′ respectively; R = H (a),p-Me (b),p-Cl (c),m-Me (d),m-Cl (e) that react with NO2 in warm EtOH to give violet dinitro complexes of the type, Ru(NO2)2(Raapm)2 (3a-3e). The nitrite complexes are useful synthons of electrophilic nitrosyls, and on triturating the dinitro compounds with conc. HClO4, nitro-nitrosyl derivatives are isolated. The solution structure and stereoretentive transformation in each step have been established from1H NMR results. The compounds are redox active and display one metal-centred oxidation and successive ligand-based reductions. The v (NO) > 1900 cm-1 strongly suggests the presence of linear Ru-N-O bonding. The electrophilic behaviour of metal-bound nitrosyl has been proved in one case by reacting with a bicyclic ketone, camphor, containing an active methylene group and an arylhydrazone with an active methine group. Diazotization of primary aromatic amines with strongly electrophilic mononitrosyl complexes in acetonotrile and dichloromethane solutions has been thoroughly studied.  相似文献   

16.
The ortho-metalated complex [Pd(x){κ 2 (C,N)-[C6H4CH2NRR′ (Y)}] (2a4a and 2b3b) was prepared by refluxing in benzene equimolecular amounts of Pd(OAc)2 and secondary benzylamine [a, EtNHCH2Ph; b, t-BuNHCH2Ph followed by addition of excess NaCl. The reaction of the complexes [Pd(x){κ 2 (C,N)-[C6H4CH2NRR′ (Y)}] (2a4a and 2b3b) with a stoichiometric amount of Ph3P=C(H)COC6H4-4-Z (Z = Br, Ph) (ZBPPY) (1:1 molar ratio), in THF at low temperature, gives the cationic derivatives [Pd(OC(Z-4-C6H4C=CHPPh3){κ 2 (C,N)-[C6H4CH2NRR′(Y)}] (5a9a, 4b6b, and 4b′6b′), in which the ylide ligand is O-coordinated to the Pd(II) center and trans to the ortho-metalated C(6)H(4) group, in an “end-on carbonyl”. Ortho-metallation, ylide O-coordination, and C-coordination in complexes (5a9a, 4b6b, and 4b′6b′) were characterized by elemental analysis as well as various spectroscopic techniques.  相似文献   

17.

Alkytris(2-pyridyl)phosphonium salts [(2-Py) 3 PR]X 1 [1a, R = Et, X = Br; 1b, R = Pr, X = Br; 1c, R = Bu, X = Br; 1d, R = CH2Ph, X = Br; 1e, R = CH 2 Ph, X = Cl] were synthesised from (2-Py) 3 P and an excess of RCl. 1c and 1e were found to rapidly decompose in hot acetone to 2,2′-bipyridinium(+1) bromide 2 and (2-Py)P(O)(CH 2 Ph)C(OH)Me 2 3, respectively. A reaction mechanism for both products is proposed. All compounds were fully characterized, including X-ray crystallography for 1a and 3 with 1a being the first representative of this class of compounds characterized by this technique.  相似文献   

18.

Abstract  

New phosphoramidates with formula 3-NC5H4C(O)NHP(O)XY (X=Y=Cl (1), X=Y=NH–C(CH3)3 (2a,2b), X=Y=N(C4H9)2 (3), X=Cl, Y=N(C2H5)2 (4) were synthesized and characterized by IR, 1H-, 13C-, 31P-NMR spectroscopy and CHN elemental analysis. Surprisingly, the reaction of compound 2a with LaCl3, 7H2O in 3:1 M ratio leads to a polymorph of this compound (2b). NMR spectra indicate that 2 J(PNHamide) in 2b (7.0 Hz) is very much greater than in 2a (4.1 Hz), while δ(31P) values are identical for both of them. In IR spectra, υ(P=O) is weaker but υ(C=O) is stronger in 2a than in 2b. The structures of 2a, 2b were determined by X-ray crystallography. These compounds form centrosymmetric dimers via two intermolecular P=O……H–N hydrogen bonds. Strong intermolecular N–H…N, N–H…O and weak C–H…O hydrogen bonds lead to a three-dimensional polymeric cluster in the 2a while intermolecular strong N–H……N and weak C–H……O hydrogen bonds form a two-dimensional polymeric chain in 2b.  相似文献   

19.
The reaction of chlorine with triamine [PtEnPyCl3]Cl in aqueous solution yields an insoluble powdered product, which is a mixture of compounds. Extraction with acetonitrile isolates a number of complexes: a glassy polymeric product (I), which contains a C=O group, an amino group, and pyridine; [PtPy(NH2CH2CN)Cl4] (II) as the major product (ethylenediamine converts to aminoacetonitrile as a result of oxidative dehydrogenation); and the aminochloro complex [PtPy(NClCH2CH2NH2)Cl3] (III) in a minor amount. The IR spectra of the products were studied. X-ray structure analysis was carried out for complexes II and III. Compound II: orthorhombic space group Pbcm, a = 10.925(2) ?, b = 11.413(2) ?, c = 9.979(2) ?, V = 1244.3(4) ?3, Z = 8, R hk1 = 0.033. The aminoacetonitrile molecule is coordinated to the platinum atom via the amino nitrogen atom in the trans position to pyridine; C≡N 1.07(2) ?, angle C-C≡N 178(1)°. Compound III: space group P21/n, a = 7.3016(8) ?, b = 7.8879(9) ?, c = 22.336(2) ?, β = 96.107(2)°, V = 1279.1(2) ?3, Z = 4, R hk1 = 0.0808, N-Cl = 1.77(2) ?. Original Russian Text ? I.B. Baranovskii, M.D. Surazhskaya, G.G. Aleksandrov, M.A. Golubnichaya, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 7, pp. 1136–1141.  相似文献   

20.
The mononuclear arene complexes [Cb*Co(arene)]+ (3a–g; Cb* = C4Me4; arene is biphenyl (a), diphenylmethane (b), 1,2-diphenylethane (c), diphenyl ether (d), p-terphenyl (e), 1,2-dimesitylethane (f), or 1,3-dimesitylpropane (g)) were synthesized by the reactions of arenes either with the benzene complex [Cb*Co(C6H6)]+ (1) under visible light irradiation or with the acetonitrile derivative [Cb*Co(MeCN)3]+ (2) in refluxing THF. The reactions of 2 with 1,2-diphenyle-thane, 1,3-dimesitylpropane, and p-terphenyl in a ratio of 2: 1 afforded the dinuclear complexes [Cb*Co(μ-η:η-arene)CoCb*]2+ (4c,e,g). The stability of the dinuclear arene complexes was estimated by DFT calculations. The structures of the complexes [3a]PF6 and [3e]PF6 ere established by X-ray diffraction. For Part 6, see Ref. 1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 535–539, March, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号