首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Experimental results on the physico-chemical properties of ambiently dried sodium silicate based aerogels catalyzed with various acids are reported. The aerogels were prepared by hydrolysis and polycondensation of sodium silicate followed by subsequent washings, surface chemical modification and ambient pressure drying using 10 various acid catalysts consisting of strong and weak acids. The strength and concentration of acids have the major effect on the gelation of sol and hence the physico-chemical properties of the silica aerogels. Strong acids such as HCl, HNO3 and H2SO4 resulted in shrunk (70–95%) aerogels whereas weak acids such as citric and tartaric acids resulted in less shrunk (34–50%) aerogels. The physical properties of silica aerogels were studied by measuring bulk density, volume shrinkage (%), porosity (%), pore volume, thermal conductivity, contact angle with water, Transmission Electron Microscopy (TEM), Atomic Absorption Spectroscopy (AAS), Fourier Transform Infrared Spectroscopy (FTIR), Thermo Gravimetric-Differential Thermal (TG-DT) analyses and N2 adsorption–desorption BET surface analyzer. The best quality silica aerogels in terms of low density (0.086 g/cm3), low volume shrinkage (34%), high porosity (95%), low thermal conductivity (0.09 W/m K) and hydrophobic (148°) were obtained for molar ratio of Na2SiO3:H2O:citric acid:TMCS at 1:146.67:0.72:9.46 with 20 min gelation time. The resulting aerogels exhibited the thermal stability up to around 420 °C.  相似文献   

2.
Hydrophobic silica aerogels have been prepared using the rapid supercritical extraction (RSCE) technique. The RSCE technique is a one-step methanol supercritical extraction method for producing aerogel monoliths in 3 to 8 h. Standard aerogels were prepared from a tetramethoxysilane (TMOS) recipe with a molar ratio of TMOS:MeOH:H2O:NH4OH of 1.0:12.0:4.0:7.4 × 10−3. Hydrophobic aerogels were prepared using the same recipe except the TMOS was replaced with a mixture of TMOS and one of the following organosilane co-precursors: methytrimethoxysilane (MTMS), ethyltrimethoxysilane (ETMS), or propyltrimeth-oxysilane (PTMS). Results show that, by increasing the amount of catalyst and increasing gelation time, monolithic aerogels can be prepared out of volume mixtures including up to 75% MTMS, 50% ETMS or 50% PTMS in 7.5–15 h. As the amount of co-precursor is increased the aerogels become more hydrophobic (sessile tests with water droplets yield contact angles up to 155°) and less transparent (transmission through a 12.2-mm thick sample decreases from 83 to 50% at 800 nm). The skeletal and bulk density decrease and the surface area increases (550–760 m2/g) when TMOS is substituted with increasing amounts of MTMS. The amount of co-precursor does not affect the thermal conductivity. SEM imaging shows significant differences in the nanostructure for the most hydrophobic surfaces.  相似文献   

3.
Interest in improving the optical transmission of sodium silicate-based aerogels by ambient pressure drying led to the synthesis of aerogels using a two-step sol–gel process. To produce optically transparent silica aerogel granules, NH4F (1 M) and HCl (4 M) were used as hydrolyzing and condensation catalysts, respectively. The silica aerogels were characterized by their bulk density, porosity (%), contact angle and thermal conductivity. Optical transmission of as synthesized aerogels was studied by comparing the photos of aerogel granules. Scanning electron microscopic study showed the presence of fractal structures in these aerogels. The degree of transparency in two step sol–gel process-based aerogels is higher than the conventional single step aerogels. The N2 adsorption–desorption analysis depicts that the two step sol–gel based aerogels have large surface areas. Optically transparent silica aerogels with a low density of ∼0.125 g/cc, low thermal conductivity of ∼0.128 W/mK and higher Brunauer, Emmett, and Teller surface area of ∼425 m2/g were obtained by using NH4F (1 M), HCl (4 M), and a molar ratio of Na2SiO3::H2O::trimethylchlorosilane of 1::146.67::9.46. The aerogels retained their hydrophobicity up to 500 °C.  相似文献   

4.
The effect of iron acetylacetonate on the physico-chemical properties of waterglass based silica aerogels by ambient pressure drying has been investigated. Doping the gels with iron acetylacetonat (FeAA) facilitates in the diminution of the density of the aerogels. The well established silica network provides effective confinement of FeAA nanoparticles which resists the collapse of silica network during ambient pressure drying. Therefore, in the present paper, the effects of FeAA on the physico-chemical properties of the aerogels have been studied by varying the FeAA:Na2SiO3 molar ratio from 3 × 10−4 to 6 × 10−4. The aerogels were prepared via ambient pressure drying and characterized by the bulk density, thermal conductivity and water contact angle. The aerogel’s surface morphology, elemental analysis and pore structure were characterized by means of EDAX and FTIR, TEM and N2 adsorption- desorption analyzer. The high temperature hydrophobicity of these aerogels was checked by heating them in temperature controlled furnace. Silica aerogels with low density ~0.050 g/cc have been obtained using the molar ratio of Na2SiO3:H2O:FeAA:Citric acid:TMCS at 1:146.67:3 × 10−4:0.54:9.46, respectively. EDAX and FTIR studies show that the iron species are entrapped in the mesoporous framework and not took part in the bonding with silica.  相似文献   

5.
The properties of silica aerogels are highly dependent on the post-treatment steps like gel washing, gel aging and gel drying. The experimental results of the studies on one of the post-treatment steps i.e. gel aging effect on the physical and microstructural properties of methyltrimethoxysilane (MTMS) based silica aerogels, are reported. These hybrid aerogels were prepared by two step sol–gel process followed by supercritical drying. The molar ratio of MeOH/MTMS (M) was varied from 7 to 35 by keeping the H2O/MTMS (W) molar ratio constant at 4. The as prepared alcogels of different molar ratios were aged from 0 to 5 days. It was observed that 2 days of gel aging period is the optimum gel aging period for good quality aerogels in terms of low density, less volume shrinkage and high porosity. The well tailored network matrix with low density (0.04 g/cm3), less volume shrinkage (4.5%), low thermal conductivity (0.05 W/mK) and high porosity (98.84 %) was obtained for 2 days of gel aging period of M = 35. Further, the gelation time varied from 8 to 1 h depending on the M values. The gelation time was being more for lesser M values. The aerogels were characterized by bulk density, porosity, volume shrinkage, thermal conductivity, Scanning Electron Microscopy and the Fourier Transform Infrared spectroscopy.  相似文献   

6.
Silica aerogels were made by sol-gel techniques using industrial silicon derivatives (polyethoxydisiloxanes, E-40), followed by supercritical drying with ethanol. The morphology and microstructure of the silica aerogels were investigated by using specific surface area, SBET, SEM, TEM and the pore size distribution techniques. The thermal conductivity was also measured as a function of air pressure. The results show that the diameter of the silica particles is about 13 nm and the pore size of the silica aerogels is 20–80 nm. The specific surface area of the silica aerogel is about 470 m2/g and the thermal conductivity of the silica aerogel prepared with E-40 is 0.014 w m–1 K–1 at room temperature and 1 atm.  相似文献   

7.
Hybrid organic–inorganic materials, silica–diol, were synthesized by the sol–gel process from mixtures of tetraethylorthosilicate (TEOS) and diols: ethylene glycol (HO–CH2–CH2–OH) and 1,3 propane diol (HO–CH2–CH2–CH2–OH), in acid catalysis. The gels have been synthesized for a molar ratio H2O:TEOS = 4:1 and different molar ratios diol/TEOS: 0.25; 0.5; 0.75; 1.0; 1.25 and 1.5. The resulting gels were studied by thermal analysis and FT-IR spectroscopy, in order to evidence the interaction of diols with silica matrix. Thermal analysis indicated that the condensation degree increases with the molar ratio diol/TEOS until a certain value. The thermal decomposition of the organic chains bonded within the silica network in the temperature range 250–320 °C, leaded to a silica matrix with modified morphology. The adsorption–desorption isotherms type is different for the samples with and without diol. Thus, the specific surface areas have values <11 m2/g for the samples without diol and >200 m2/g for the samples with diols, depending on the annealing temperature.  相似文献   

8.
The experimental results of thermal process on the microstructural and physical properties of ambient pressure dried hydrophobic silica aerogel monoliths are reported and discussed. With sodium silicate as precursor, ethanol/hexamethyldisiloxane/hydrochloric acid as surface modification agent, the crack-free and high hydrophobic silica aerogel monoliths was obtained possessing the properties as low density (0.096 g/cm3), high surface area (651 m2/g), high hydrophobicity (~147°) and low thermal conductivity (0.0217 Wm/K). Silica aerogels maintained hydrophobic behavior up to 430 °C. After a thermal process changing from room temperature to 300 °C, the hydrophobicity remained unchanged (~128°), of which the porosity was 95.69% and specific density about 0.094 g/cm3. After high temperature treatment (300–500 °C), the density of final product decreased from 0.094 to 0.089 g/cm3 and porosity increased to 96.33%. With surface area of 466 m2/g, porosity of 91.21% and density about 0.113 g/cm3, silica aerogels were at a good state at 800 °C. Thermal conductivities at desired temperatures were analyzed by the transient plane heat source method. Thermal conductivity coefficients of silica aerogel monoliths changed from 0.0217 to 0.0981 Wm/K as temperature increased to 800 °C, revealed an excellent heat insulation effect during thermal process.  相似文献   

9.
Ambient pressure drying has been carried out for the synthesis of silica–titania aerogel monoliths. The prepared aerogels show densities in the range 0.34–0.38 g/cm3. The surface area and pore volume of these mixed oxide aerogels are comparable to those of the supercritically dried ones. The surface area for 5wt% titania aerogel has been found to be as high as 685 m2/g with a pore volume of 2.34 cm3/g and the 10wt% titania aerogel has a surface area of 620 m2/g with a pore volume of 2.36 cm3/g. Some gels were also made hydrophobic by a surface treatment with methyltrimethoxysilane and trimethylchlorosilane. The surface modified aerogels possess high surface areas in the range of 540–640 m2/g, and are thermally stable in terms of retaining hydrophobicity up to a temperature of 520 °C. The pore size distribution of the aerogels clearly indicates the preservation of the aerogel structure. High Resolution Transmission Electron microscopy has been employed to characterise the aerogels and Fourier Transform infrared spectroscopy to study the effect of titania addition to silica and the surface modification. X-ray diffraction patterns were recorded to verify the molecular homogeneity of the aerogel.  相似文献   

10.
Tetraalkylammonium fluoride salts have been employed as catalysts for the synthesis of silica aerogels by a two-step, sol–gel method. Aerogel materials were characterized by N2 physisorption and SEM. The effect of the type of catalyst on the optical transparency of obtained aerogels has been examined. It has been found that such compounds allow the synthesis of silica aerogels with the highest optical transmittance ever reported for such materials. The optimal catalysts are tetrabutyl and tetraoctyl ammonium fluoride, with which aerogels with transparency as high as 96% and extinction coefficient as low as 3.5 m−1 can be prepared.  相似文献   

11.
The experimental results by using various exchanging solvents in the preparation of two step (acid and base) processed ambient pressure dried hydrophobic silica aerogels, are reported. Silica alcogels were prepared by hydrolysis with oxalic acid and condensation with NH4OH of ethanol diluted tetraethylorthosilicate (TEOS) precursor and hexamethyldisilazane(HMDZ) methylating agent. The exchanging solvents used were: hexane, cyclohexane, heptane, benzene, toluene and xylene. The physical properties such as % of volume shrinkage, density, pore volume, % of porosity, thermal conductivity, % of optical transmission, surface area, pore size distribution and contact angle (θ) of the silica aerogels with water, were measured as a function of EtOH/TEOS molar ratios (R) for all the exchanging solvents. It was found that the physical and hydrophobic properties of the silica aerogels strongly depend on the nature of the solvent and R. Heptane solvent resulted in highly transparent (≈90% optical transmission at 700 nm for 1 cm thick sample), low density (≈0.060 g/cm3), low thermal conductive (≈0.070 W/m·K), high % of porosity (97%), high surface area (750 m2/g), uniform porosity and hydrophobic (θ ≈ 160°) aerogels compared to other solvents. On the otherhand, xylene resulted in aerogels with higher hydrophobicity (θ ≈ 172°) among other solvents.  相似文献   

12.
Effective preparation of crack-free silica aerogels via ambient drying   总被引:2,自引:0,他引:2  
Effective ambient-drying techniques for synthesizing crack-free silica aerogel bulks from the industrial waterglass have been developed. Silica wet gels were obtained from aqueous colloidal silica sols prepared by ion-exchange of waterglass solution (4–10 wt% SiO2). Crack-free monolithic silica aerogel disks (diameter of 22 mm and thickness of 7 mm) were produced via solvent exchange/surface modification of the wet gels using isopropanol/trimethylchlorosilane/n-Hexane solution, followed by ambient drying. The effects of the silica content in sol and the molar ratio of trimethylchlorosilane/pore water on the morphology and property of final aerogel products were also investigated. The porosity, density, and specific surface area of silica aerogels were in the range of 92–94%, 0.13–0.16 g/cm3, and ∼675 m2/g, respectively. The degree of springback during the ambient drying processing of modified silica gels was 94%.  相似文献   

13.
The synthesis and physical properties of high surface area silica xerogels obtained by a two-step sol–gel process in the absence of supercritical conditions are reported. The hydrolysis and condensation reactions were followed by infrared spectroscopy. The increment in the bands corresponding to silanol and hydroxyl groups suggests that the hydrolysis reaction was complete during the first 30 min. The effect on surface area and global reaction time under various reaction conditions, such as type of alkaline catalyst and solvents, water–monomer and solvent–monomer molar ratios, was also studied. The obtained results suggest that surface area was increased using 3-aminopropyltriethoxysilane as catalyst. The use of isopropyl alcohol as solvent promotes the reduction of the capillary stress, giving a well-structured xerogel. As a conclusion, with H2O/i-PrOH/TEOS in a molar ratio of 10:4:1, it was possible to obtain silica xerogels with surface areas about 1,240 m2/g. Such surface areas are comparable with those obtained under supercritical conditions (aerogels), and higher than those xerogels conventionally obtained under normal condition (500–800 m2/g).  相似文献   

14.
Ultra fine silica powders were prepared by hydrolysis of SiCl4 using aqueous ammonia solution followed by supercritical drying. Using different methods of combining the SiCl4 and ammonia solution, to vary the initial and final pH of the solution, large silica powders surface areas (271–905 m2/g), fine average particle diameters (3.5–17) nm and low tapping densities (0.02–0.05 g/cm2) could be prepared. Powders with characteristics similar to pyrogenic silica, and with similar thermal stability at temperatures up to 1000°C, could be produced.  相似文献   

15.
Less fragile lightweight nanostructured polyurea based organic aerogels were prepared via a simple sol–gel processing and supercritical drying method. The uniform polyurea wet gels were first prepared at room temperature and atmospheric pressure by reacting different isocyanates with polyamines using a tertiary amine (triethylamine) catalyst. Gelation kinetics, uniformity of wet gel, and properties of aerogel products were significantly affected by both target density (i.e., solid content) and equivalent weight (EW) ratio of the isocyanate resin and polyamine hardener. A supercritical carbon dioxide (CO2) drying method was used to extract solvent from wet polyurea gels to afford nanoporous aerogels. The thermal conductivity values of polyurea based aerogel were measured at pressures from ambient to 0.075 torr and at temperatures from room temperature to −120 °C under a pressure of 8 torr. The polyurea based aerogel samples demonstrated high porosities, low thermal conductivity values, hydrophobicity properties, relatively high thermal decomposition temperature (~270 °C) and low degassing property and were less dusty than silica aerogels. We found that the low thermal conductivities of polyurea based aerogels were associated with their small pore sizes. These polyurea based aerogels are very promising candidates for cryogenic insulation applications and as a thermal insulation component of spacesuits.  相似文献   

16.
Mesoporous titania nanoparticles (denoted as MTN) with high surface area (e.g., 252 m2 g−1) were prepared using tetrapropyl orthotitanate (TPOT) as a titania precursor and 10–20 nm or 20–30 nm silica colloids as templates. Co-assembly of TPOT and silica colloids in an aerosol-assisted process and immediate calcination at 450 °C resulted in anatase/silica composite nanoparticles. Subsequent removal of the silica colloids from the composite by NaOH solution created mesopores in the TiO2 nanoparticles with pore size corresponding to that of silica colloids. Effects of silica colloids’ contents on MTN porosity and crystallites’ growth at a higher calcination temperature (e.g., 1000 °C) were investigated. Silica colloids suppressed the growth of TiO2 crystallites during calcination at a higher calcination temperature and controllable contents of the silica colloids in precursor solution resulted in various atomic ratios of anatase to rutile in the calcinated materials. The mesostructure and crystalline structure of these titania materials were characterized by transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD), differential thermal analysis (DTA)-thermo-gravimetric analysis (TGA), and N2 sorption.  相似文献   

17.
An effective method to prepare the composites of multi-wall carbon nanotubes (MWCNTs) and vanadium pentoxide (V2O5) was presented. Vanadyl-triisopropoxide (VO(OC3H7)3) was used as the starting material, MWCNTs pretreated with acids by a two-step process was used as the conductive ingredient. V2O5–MWCNTs composites were synthesized via a sol–gel method with solvent exchange and an ambient pressure drying technique. The samples were characterized by SEM, TEM, XRD, BET, Raman spectra and electrical resistivity measurement respectively. The experimental results indicate that the V2O5–MWCNTs nanocomposite has a fiber-like and tri-dimensional network structure. Its surface area is up to 189.7 m2/g when the MWCNTs’ content is 15 wt%. And MWCNTs are dispersed homogeneously in the composites. The electrical resistivity of the composites decreases from 1,239 to 765 Ω·cm when the MWCNTs’ content increases from 0 to 10 wt%. Thus MWCNTs can improve properties of V2O5 aerogels as the cathode material in lithium batteries.  相似文献   

18.
The degradation of nitro aromatics like trinitrotoluene (TNT) released in the waste water from explosive process plants is the serious problem due to toxic and explosive nature of TNT. The poor response of TNT to biodegradation enhanced the gravity of the problem. We have demonstrated that high specific surface area TiO2–SiO2 nano-composite aerogel is promising photo catalyst in successful treating of TNT contaminated aqueous solution. The TiO2–SiO2 composite aerogel with nominal content of 20 and 50% TiO2, used as catalyst, were prepared by co-precursor sol–gel method using titanium isopropaxide and tetramethylorthosilicate as source of titania and silica, respectively. The XRD studies confirmed formation of anatase phase of crystalline TiO2 with nano sized crystallites. The TiO2–SiO2 aerogel showed specific surface area of 1,107 and 485 m2/g for the aerogels containing 20 and 50% TiO2, respectively. The 100 ppm TNT solution was treated, in 700 ml capacity reaction vessel, using H2O2 oxidizer and TiO2–SiO2 aerogel catalyst in presence of UV light (8 W UV lamp). Using TiO2–SiO2 (50/50) aerogel with surface area of 485 m2/g, we succeeded to reduce the TOC to 1 ppm within 3.5 h where as using TiO2/SiO2 (20/80) aerogel with surface area of 1,107 m2/g, the TOC was reduced to about only 7 ppm in the same time. It revealed that the combination of high TiO2 content and high specific surface area is an important factor to achieve effective and faster degradation of TNT for complete mineralization.  相似文献   

19.
In this study, the formation of silica–chitosan hybrid materials via sol–gel process under pH values of 2–6 were investigated using N2 sorption analysis, scanning electron microscopy, transmission electron microscopy, thermal analysis and zeta potential analyzer. The hierarchical structure consisting of meso- and macropore was formed when pH value was higher than 2. Mesopores were formed as the interparticle channels of silica nanoparticles aggregates, whereas macropores were the void between the aggregates (clusters). The clusters size was decreased with increasing the pH value, resulting in the increase of the macroporosity. The thermal conductivity of the products was controlled in the range of 0.06 and 0.13 W m−1 K−1 by varying the product porosity between 88 and 69% (pH 6 and pH 2, respectively).  相似文献   

20.
The experimental results on the preparation of low thermal conductivity and transparent ambient pressure dried silica aerogels with the sodium silicate solution, TMCS silylating agent with methanol, isopropyl alcohol, hexane and xylene solvents, are reported. This study is focussed on the effect of preparation conditions such as varying the number of preparation steps, pH of the hydrosol and hydrogel ageing temperature, for the production of the low thermal conductive silica aerogels and the results are analysed. Density, thermal conductivity, % of optical transmission and contact angle of the aerogels were measured. The Fourier Transform Infrared Spectroscopy (FTIR) studies revealed the presence of Si–C and C–H along with the Si–O–Si and OH bonds and their intensities strongly depend on the processing steps, pH of the hydrosol and gel ageing temperature. The UV–Visible spectra indicated the % of optical transmission of the aerogels decreased with increasing the number of processing steps, increase in the pH of the hydrosol from 3 to 8 and decreased for ageing temperature up to 50 °C. Further increase in temperature >50 °C, the % of optical transmission of the aerogels increased. The TGA-DTA data showed the thermal stability of the aerogels with respect to hydrophobicity is 325 °C. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) analyses revealed the nanostructure of the aerogels. The porosity of the aerogels was studied using the pore size distribution. Silica aerogels with low density (0.051 g/cc), low thermal conductivity (0.049 W/m K), optical transmission (65%), high hydrophobicity (159°) and resistance to humid atmosphere >1 year was obtained in the present studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号