首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A problem with nonlocal multipoint conditions for the nth-order partial differential equation with constant coefficients is considered. In the case where conditions of strict averaging of time intervals are specified, the existence of a solution of the problem in a cylinder that is the Cartesian product of a time interval and a p-dimensional spatial torus is discussed. It is found that under certain conditions of separability of the roots of the characteristic equation for almost all (in the sense of the Lebesgue measure) coefficients of the equation and parameters of the conditions, the solution of the problem cannot be extended in the time variable beyond the extreme points at which the conditions are given.  相似文献   

2.
On the validity of the Ginzburg-Landau equation   总被引:1,自引:0,他引:1  
Summary The famous Ginzburg-Landau equation describes nonlinear amplitude modulations of a wave perturbation of a basic pattern when a control parameterR lies in the unstable regionO(ε 2) away from the critical valueR c for which the system loses stability. Hereε>0 is a small parameter. G-L's equation is found for a general class of nonlinear evolution problems including several classical problems from hydrodynamics and other fields of physics and chemistry. Up to now, the rigorous derivation of G-L's equation for general situations is not yet completed. This was only demonstrated for special types of solutions (steady, time periodic) or for special problems (the Swift-Hohenberg equation). Here a mathematically rigorous proof of the validity of G-L's equation is given for a general situation of one space variable and a quadratic nonlinearity. Validity is meant in the following sense. For each given initial condition in a suitable Banach space there exists a unique bounded solution of the initial value problem for G-L's equation on a finite interval of theO(1/ε2)-long time scale intrinsic to the modulation. For such a finite time interval of the intrinsic modulation time scale on which the initial value problem for G-L's equation has a bounded solution, the initial value problem for the original evolution equation with corresponding initial conditions, has a unique solutionO2) — close to the approximation induced by the solution of G-L's equation. This property guarantees that, for rather general initial conditions on the intrinsic modulation time scale, the behavior of solutions of G-L's equation is really inherited from solutions of the original problem, and the other way around: to a solution of G-L's equation corresponds a nearby exact solution with a relatively small error.  相似文献   

3.
We study existence and uniqueness of the solution for the inverse problem of determination of the unknown coefficient ϱ(t) multiplying u t in a nondivergence parabolic equation. As additional information, the integral of the solution over the domain of space variables with some given weight function is specified. The coefficients of the equation depend both on time and on the space variables.  相似文献   

4.
We consider the initial value boundary problem with zero Neumann data for an equation modeled after the porous media equation, with variable coefficients. The spatial domain is unbounded and shaped like a (general) paraboloid, and the solution u is integrable in space and nonnegative. We show that the asymptotic profile for large times of u is one dimensional and given by an explicit function, which can be regarded as the fundamental solution of a one-dimensional differential equation with weights. In the case when the domain is a cone or the whole space (Cauchy problem), we obtain a genuine multidimensional profile given by the well-known Barenblatt solution.  相似文献   

5.
We consider a solution u(x, t) of the general linear evolution equation of the second order with respect to time variable given on the ball Π(T) = {(x,t): xε R n, t ε [0, T]} and study the dependence of the behavior of this solution on the behavior of the functions at infinity. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 5, pp. 724–731, May, 1998.  相似文献   

6.
Komarov  M. V.  Shishmarev  I. A. 《Mathematical Notes》2002,72(1-2):204-211
In this paper, we consider a periodic problem for the n-dimensional complex Landau--Ginzburg equation. It is shown that in the case of small initial data there exists a unique classical solution of this problem, and an asymptotics of this solution uniform in the space variable is given. The leading term of the asymptotics is exponentially decreasing in time.  相似文献   

7.
This paper deals with the randomized heat equation defined on a general bounded interval [L1, L2] and with nonhomogeneous boundary conditions. The solution is a stochastic process that can be related, via changes of variable, with the solution stochastic process of the random heat equation defined on [0,1] with homogeneous boundary conditions. Results in the extant literature establish conditions under which the probability density function of the solution process to the random heat equation on [0,1] with homogeneous boundary conditions can be approximated. Via the changes of variable and the Random Variable Transformation technique, we set mild conditions under which the probability density function of the solution process to the random heat equation on a general bounded interval [L1, L2] and with nonhomogeneous boundary conditions can be approximated uniformly or pointwise. Furthermore, we provide sufficient conditions in order that the expectation and the variance of the solution stochastic process can be computed from the proposed approximations of the probability density function. Numerical examples are performed in the case that the initial condition process has a certain Karhunen‐Loève expansion, being Gaussian and non‐Gaussian.  相似文献   

8.
This paper is devoted to the study of the one dimensional non homogeneous heat equation coupled to Dirichlet Boundary Conditions.We obtain the explicit expression of the solution of the linear equation by means of a direct integral in an unbounded domain. The main novelty of this expression relies in the fact that the solution is not given as a series of infinity terms. On our expression the solution is given as a sum of two integrals with a finite number of terms on the kernel.The main novelty is that, on the contrary to the classical method, where the solutions are derived by a direct application of the separation of variables method, on the basis of the spectral theory and the Fourier Series expansion, the solution is obtained by means of the application of the Laplace Transform with respect to the time variable. As a consequence, for any t0 fixed, we must solve an Ordinary Differential Equation on the spatial variable, coupled to Dirichlet Boundary conditions. The solution of such a problem is given by the construction of the related Green’s function.  相似文献   

9.
We consider solutions of the initial-Neumann problem for the heat equation on bounded Lipschitz domains in ℝ N and classify the solutions whose spatial level surfaces are invariant with respect to the time variable. (Of course, the values of each solution on its spatial level surfaces vary with time.) The prototype of such classification is a result of Alessandrini, which proved a conjecture of Klamkin. He considered the initial-Dirichlet problem for the heat equation on bounded domains and showed that if all the spatial level surfaces of the solution are invariant with respect to the time variable under the homogeneous Dirichlet boundary condition, then either the initial data is an eigenfunction or the domain is a ball and the solution is radially symmetric with respect to the space variable. His proof is restricted to the initial-Dirichlet problem for the heat equation. In the present paper, in order to deal with the initial-Neumann problem, we overcome this obstruction by using the invariance condition of spatial level surfaces more intensively with the help of the classification theorem ofisoparametric hypersurfaces in Euclidean space of Levi-Civita and Segre. Furthermore, we can deal with nonlinear diffusion equations, such as the porous medium equation.  相似文献   

10.
In this paper, a time‐fractional diffusion equation with singular source term is considered. The Caputo fractional derivative with order 0<α ?1 is applied to the temporal variable. Under specific initial and boundary conditions, we find that the time‐fractional diffusion equation presents quenching solution that is not globally well‐defined as time goes to infinity. The quenching time is estimated by using the eigenfunction of linear fractional diffusion equation. Moreover, by implementing a finite difference scheme, we give some numerical simulations to demonstrate the theoretical analysis. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
By using a time slicing procedure, we represent the solution operator of a second-order parabolic pseudodifferential equation on ? n as an infinite product of zero-order pseudodifferential operators. A similar representation formula is proven for parabolic differential equations on a compact Riemannian manifold. Each operator in the multi-product is given by a simple explicit Ansatz. The proof is based on an effective use of the Weyl calculus and the Fefferman-Phong inequality.  相似文献   

12.
In this study, we discuss some limit analysis of a viscous capillary model of plasma, which is expressed as a so‐called the compressible Navier‐Stokes‐Poisson‐Korteweg equation. First, the existence of global smooth solutions for the initial value problem to the compressible Navier‐Stokes‐Poisson‐Korteweg equation with a given Debye length λ and a given capillary coefficient κ is obtained. We also show the uniform estimates of global smooth solutions with respect to the Debye length λ and the capillary coefficient κ. Then, from Aubin lemma, we show that the unique smooth solution of the 3‐dimensional Navier‐Stokes‐Poisson‐Korteweg equations converges globally in time to the strong solution of the corresponding limit equations, as λ tends to zero, κ tends to zero, and λ and κ simultaneously tend to zero. Moreover, we also give the convergence rates of these limits for any given positive time one by one.  相似文献   

13.
In this paper, we consider a Cauchy problem of the time fractional diffusion equation (TFDE). Such problem is obtained from the classical diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α (0 < α ≤ 1). We show that the Cauchy problem of TFDE is severely ill-posed and further apply a new regularization method to solve it based on the solution given by the Fourier method. Convergence estimates in the interior and on the boundary of solution domain are obtained respectively under different a-priori bound assumptions for the exact solution and suitable choices of regularization parameters. Finally, numerical examples are given to show that the proposed numerical method is effective.  相似文献   

14.
We propose and analyze a fast method for computing the solution of the high frequency Helmholtz equation in a bounded one-dimensional domain with a variable wave speed function. The method is based on wave splitting. The Helmholtz equation is split into one-way wave equations with source functions which are solved iteratively for a given tolerance. The source functions depend on the wave speed function and on the solutions of the one-way wave equations from the previous iteration. The solution of the Helmholtz equation is then approximated by the sum of the one-way solutions at every iteration. To improve the computational cost, the source functions are thresholded and in the domain where they are equal to zero, the one-way wave equations are solved with geometrical optics with a computational cost independent of the frequency. Elsewhere, the equations are fully resolved with a Runge–Kutta method. We have been able to show rigorously in one dimension that the algorithm is convergent and that for fixed accuracy, the computational cost is asymptotically just O(w1/ p)\mathcal {O}(\omega^{1/ p}) for a pth order Runge–Kutta method, where ω is the frequency. Numerical experiments indicate that the growth rate of the computational cost is much slower than a direct method and can be close to the asymptotic rate.  相似文献   

15.
We show that a solution of the Cauchy problem for the KdV equation, has a drastic smoothing effect up to real analyticity if the initial data only have a single point singularity at x = 0. It is shown that for () data satisfying the condition the solution is analytic in both space and time variable. The above condition allows us to take as initial data the Dirac measure or the Cauchy principal value of 1/x. The argument is based on the recent progress on the well-posedness result by Bourgain [2] and Kenig-Ponce-Vega [20] and a systematic use of the dilation generator . Received 22 March 1999  相似文献   

16.
The above equation has some remarkable properties. In general a global solution exists in a weak sense only, and this solution is not reversible in time. Furthermore it is known, that the solutions for different initial values can coincide for all t ? t0 > 0, and the set of the initial values with this property is convex. Conditions assuring that this set contains only one element are given. This means a weak form of time-reversibility. As a global solution exists only in the weak sense, the classical question concerning dependence of the solution on the initial values needs some modification. This problem is dealt with in suitable L1-norms. It is shown, that the L1-norm of the difference of two weak solutions with respect to the space variable does not increase in time.  相似文献   

17.
We address the problem of optimal reconstruction of the values of a linear operator on ℝ d or ℤ d from approximate values of other operators. Each operator acts as the multiplication of the Fourier transform by a certain function. As an application, we present explicit expressions for optimal methods of reconstructing the solution of the heat equation (for continuous and difference models) at a given instant of time from inaccurate measurements of this solution at other time instants.  相似文献   

18.
We consider a process X solution of a semilinear stochastic evolution equation in a Hilbert space. Assuming that X has an invariant measure ν, we investigate its regularity properties. Logarithmic derivatives of ν in certain directions, are shown to exist under appropriate conditions on the nonlinear term in the equation. A set of directions of differentiability for ν is explicitly described in terms of the coefficients of the equation. In some cases, logarithmic derivatives are represented as conditional expectations of random variables related to an appropriate stationary process. An application to a system of stochastic partial differential equations in one space variable is given  相似文献   

19.
For a parabolic equation, we consider inverse problems of reconstructing a coefficient that depends on the space variables alone. The first problem is to find a lower-order coefficient c(x) multiplying u(x, t), and the second problem is to find the coefficient a(x) multiplying Δu. As additional information, the integral of the solution with respect to time with some weight function is given. The coefficients of the equation depend both on time and on the space variables. We obtain sufficient conditions for the existence of generalized solutions of our problems; moreover, for the first problem, we also prove uniqueness and construct an iterative sequence that converges to the desired coefficient almost everywhere in the domain. We present examples of input data of these problems for which the assumptions of our theorems are necessarily true.  相似文献   

20.
The boundary control problem for the wave equation on a planar graph consisting of strings of variable densities with Dirichlet control at boundary vertices is considered. The exact controllability in L2-classes of controls and states is established in the case where the graph is a tree; a sharp estimate of the time of controllability is given. Bibliography: 7 titles. Dedicated to J. E. Lagnese on the occasion of his 65th birthday __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 308, 2004, pp. 23–47.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号