首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determine the sensitivity of several commercial atmospheric pressure ionization mass spectrometers towards ambient vapors, ionized by contact with an electrospray of acidified or ammoniated solvent, a technique often referred to as secondary electrospray ionization (SESI). Although a record limit of detection of 0.2 × 10−12 atmospheres (0.2 ppt) is found for explosives such as PETN and 0.4 ppt for TNT (without preconcentration), this still implies the need for some 108–109 vapor molecules/s for positive identification of explosives. This extremely inefficient use of sample is partly due to low charging probability (∼10−4), finite ion transmission, and counting probability in the mass spectrometer (1/10 in quadrupoles), and a variable combination of duty cycle and background noise responsible typically for a 103 factor loss of useful signal.  相似文献   

2.
In this study, we investigated how binary mixtures of compounds influence each other's signal intensity in electrospray ionization (ESI), extractive electrospray ionization (EESI) and secondary electrospray ionization (SESI) experiments. The experiments were conducted using a series of homologous primary amines (from 1-butyl to 1- decylamine). In every experiment, two of the amines were present, and all 21 possible combinations were measured with EESI, ESI and SESI as ionization sources. Except for the volatility, which decreases with increasing molecular weight, the physico-chemical properties of the amines are very similar, so that the intensity ratio obtained in each experiment provides information about discrimination effects occurring during the ionization process. The results show that for the relatively volatile compounds investigated, the EESI ionization mechanism resembles the SESI-like gas-phase charge transfer more than ESI-like analyte ionization in solution. In addition, almost no discrimination effects were observed in the spectra obtained in EESI experiments. Quantitative EESI experiments with nonylamine as internal standard showed that EESI is capable of providing both more accurate and more precise results than SESI and ESI.  相似文献   

3.
In this study, we use an ion funnel (IF) at ambient pressure to enhance the sensitivity of secondary electrospray ionization (SESI). Atenolol, salbutamol and cocaine as test compounds are delivered to the SESI interface in the gas phase and are charged with three nano electrosprays. In our experiments, we show that the compounds can be detected at concentrations in the low pptv range, which is an increase of two orders of magnitude compared with the results without the IF. With a standard SESI interface, the compounds could not be detected at all. With the use of the SESI IF interface for the headspace analysis of bananas and limes, we can detect many more compounds and at higher intensities than with a standard SESI interface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Vapors released by the skin in the hand of one human subject are detected in real time by sampling them directly from the ambient gas surrounding the hand, ionizing them by secondary electrospray ionization (SESI, via contact with the charged cloud from an electrospray source), and analyzing them in a mass spectrometer with an atmospheric pressure source (API-MS). This gas-phase approach is complementary to alternative on-line surface ionization methods such as DESI and DART. A dominating peak of lactic acid and a complete series of saturated and singly unsaturated fatty acids (C12 to C18) are observed, in accordance with previous off-line studies by gas chromatography-mass spectrometry. Several other metabolites have been identified, including ketomonocarboxylic and hydroxymonocarboxylic acids.  相似文献   

5.
The exposure of charged microdroplets containing organic ions to solid-phase reagents at ambient surfaces results in heterogeneous ion/surface reactions. The electrosprayed droplets were driven pneumatically in ambient air and then electrically directed onto a surface coated with reagent. Using this reactive soft landing approach, acid-catalyzed Girard condensation was achieved at an ambient surface by directing droplets containing Girard T ions onto a dry keto-steroid. The charged droplet/surface reaction was much more efficient than the corresponding bulk solution-phase reaction performed on the same scale. The increase in product yield is ascribed to solvent evaporation, which causes moderate pH values in the starting droplet to reach extreme values and increases reagent concentrations. Comparisons are made with an experiment in which the droplets were pneumatically accelerated onto the ambient surface (reactive desorption electrospray ionization, DESI). The same reaction products were observed but differences in spatial distribution were seen associated with the “splash” of the high velocity DESI droplets. In a third type of experiment, the reactions of charged droplets with vapor phase reagents were examined by allowing electrosprayed droplets containing a reagent to intercept the headspace vapor of an analyte. Deposition onto a collector surface and mass analysis showed that samples in the vapor phase were captured by the electrospray droplets, and that instantaneous derivatization of the captured sample is possible in the open air. The systems examined under this condition included the derivatization of cortisone vapor with Girard T and that of 4-phenylpyridine N-oxide and 2-phenylacetophenone vapors with ethanolamine.  相似文献   

6.
The conformation of cytochrome c molecules within electrospray droplets is investigated by monitoring the laser induced fluorescence of its single tryptophan residue (Trp-59). By increasing the alcohol concentration of the electrosprayed solutions, protein denaturation is induced, giving rise to significant changes in the intensity of the detected fluorescence. Comparison with analogous denaturation experiments in solution provides information about the relative protein conformations and differences between the bulk-solution and droplet environments. Both electrospray-plume and bulk-solution fluorescence measurements using low methanol concentration solutions indicate the presence of folded protein structures. At high methanol content, fluorescence measurements are consistent with the presence of partly denatured or unfolded conformations. At intermediate methanol content, differences are observed between the extent of denaturation in solution and that within the droplets, suggesting electrosprayed proteins have more compact structures than those detected in bulk measurements using solutions of similar composition. This infers that some fraction of the proteins within the droplets have refolded relative to their bulk-solution conformation. Protein denaturation experiments using the low vapor pressure solvent 1-propanol indicate that differences between the droplet and solution measurements are not due to solvent evaporation effects. It is suggested that different droplet conformations are more likely the result of protein diffusion to the droplet surface and effects of the droplet/air interface. To our knowledge, these are the first reported measurements of protein fluorescence within electrospray droplets.  相似文献   

7.
Ions from compounds of megadalton (MDa) molecular weight were produced in an electrospray ionization source from solutions of poly(ethylene oxide) (PEO) samples with average molecular weights ranging from 1,000,000 to 7,000,000 Da. Charge detection mass spectrometry (CDMS) has been used to determine the mass of the MDa PEOs. Simultaneous measurement of the charge and velocity of individual ions allows the mass determination of the ion, after calibration of the instrument with independent samples. In addition to the mass spectra, CDMS generates charge-versus-mass plots, which allow investigation of the charging of electrosprayed ions over a broad range of masses. The experimental charging capacity of MDa PEOs is compared with a simple model based on the affinity of alkali cations for oxygen sites and on the electrostatic potential energy of the charged polymer. The charging capacity of PEOs was also investigated as a function of the concentration of and the type of alkali ions.  相似文献   

8.
Electrospray ionization (ESI) is commonly used in macromolecular mass spectrometry, yet the dynamics of macromolecules in ESI droplets are not well understood. In this study, a Monte Carlo based model was developed, which can predict the efficiency of electrospray ionization for macromolecules, i.e., the number of macromolecular ions produced per macromolecules electrosprayed. The model takes into account ESI droplet evaporation, macromolecular diffusion within the droplet, droplet fissions, and the statistical nature of the ESI process. Two idealized representations of macromolecular analytes were developed, describing cluster prone, droplet surface inactive macromolecules and droplet surface active macromolecules, respectively. It was found that surface active macromolecules are preferentially ionized over surface inactive cluster prone macromolecules when the initial droplet size is large and the analyte concentration in solution is high. Simulations showed that ESI efficiency decreases with increasing initial droplet size and analyte molecular weight, and is influenced by analyte surface activity, the properties of the solvent, and the variance of the droplet size distribution. Model predictions are qualitatively supported by experimental measurements of macromolecular electrospray ionization made previously. Overall, this study demonstrates the potential capabilities of Monte Carlo based ESI models. Future developments in such models will allow for more accurate predictions of macromolecular ESI intensity.  相似文献   

9.
Acidic proteins and nucleic acids such as RNA are most readily ionized in electrospray ionization (ESI) operated in negative-ion mode. The multiply deprotonated protein or RNA ions can be used as precursors in top- down mass spectrometry. Because the performance of the dissociation method used critically depends on precursor ion negative net charge, it is important that the extent of charging in ESI can be manipulated efficiently. We show here that (M - nH)(n-) ion net charge of proteins and RNA can be controlled efficiently by the addition of organic bases to the electrosprayed solution. Our study also highlights the fact that ion formation in ESI in negative mode is only poorly understood.  相似文献   

10.
The origin of the extent of charging and the mechanism by which multiply charged ions are formed in electrospray ionization have been hotly debated for over a decade. Many factors can affect the number of charges on an analyte ion. Here, we investigate the extent of charging of poly(propyleneimine) dendrimers (generations 3.0 and 5.0), cytochrome c, poly(ethylene glycol)s, and 1,n-diaminoalkanes formed from solutions of different composition. We demonstrate that in the absence of other factors, the surface tension of the electrospray droplet late in the desolvation process is a significant factor in determining the overall analyte charge. For poly(ethylene glycol)s, 1,n-diaminoalkanes, and poly(propyleneimine) dendrimers electrosprayed from single-component solutions, there is a clear relationship between the analyte charge and the solvent surface tension. Addition of m-nitrobenzyl alcohol (m-NBA) into electrospray solutions increases the charging when the original solution has a lower surface tension than m-NBA, but the degree of charging decreases when this compound is added to water, which has a higher surface tension. Similarly, the charging of cytochrome c ions formed from acidified denaturing solutions generally increases with increasing surface tension of the least volatile solvent. For the dendrimers investigated, there is a strong correlation between the average charge state of the dendrimer and the Rayleigh limiting charge calculated for a droplet of the same size as the analyte molecule and with the surface tension of the electrospray solvent. A bimodal charge distribution is observed for larger dendrimers formed from water/m-NBA solutions, suggesting the presence of more than one conformation in solution. A similar correlation is found between the extent of charging for 1,n-diaminoalkanes and the calculated Rayleigh limiting charge. These results provide strong evidence that multiply charged organic ions are formed by the charged residue mechanism. A significantly smaller extent of charging for both dendrimers and 1,n-diaminoalkanes would be expected if the ion evaporation mechanism played a significant role.  相似文献   

11.
Impact desolvation of electrosprayed microdroplets (IDEM) is a new method for producing gas-phase ions of large biomolecules. Analytes are dissolved in an electrolyte solution which is electrosprayed in vacuum, producing highly charged micron and sub-micron sized droplets (microdroplets). These microdroplets are accelerated through potential differences approximately 5 - 10 kV to velocities of several km/s and allowed to impact a target surface. The energetic impacts vaporize the droplets and release desolvated gas-phase ions of the analyte molecules. Oligonucleotides (2- to 12-mer) and peptides (bradykinin, neurotensin) yield singly and doubly charged molecular ions with no detectable fragmentation. Because the extent of multiple charging is significantly less than in atmospheric pressure electrospray ionization, and the method produces ions largely free of adducts from solutions of high ionic strength, IDEM has some promise as a method for coupling to liquid chromatographic techniques and for mixture analysis. Ions are produced in vacuum at a flat equipotential surface, potentially allowing efficient ion extraction.  相似文献   

12.
Oligopeptide mixtures have been subjected to electrospray ionization, accumulated within a quadrupole ion trap, and subjected to ion/ion proton transfer reactions with anions derived from perfluoro-1,3-dimethylcyclohexane. Various mixtures were studied with approximate molecular weight ranges of 0.5–8.5, 12–30, 45–100, and 0.5–100 kDa. Mixtures of known composition were studied to evaluate the mixture complexity amenable to electrospray combined with ion/ion reactions to reduce spectral complexity associated with multiple charging. Mixture analysis with at least 40 components of low and medium molecular weight and roughly comparable solution concentrations appears to be straightforward. No matrix effects upon ionization were implicated in the data for the low and medium molecular weight mixtures but bovine albumin appeared to inhibit signals from bovine transferrin and chicken conalbumin in the high molecular weight mix. Furthermore, the presence of abundant low mass-to-charge ions appeared to inhibit signals from high molecular weight proteins (>40 kDa) in the 0.5–100 kDa mix. Such an observation is consistent with dynamic range limitations that can arise from discrimination based on ion space charge effects, although an ionization matrix effect could not be precluded from the data reported here. The results reported here indicate that the limitation to mixture complexity amenable to electrospray mass spectrometry imposed by spectral congestion associated with multiple charging can be significantly reduced via ion/ion reactions. The use of ion/ion reactions can therefore facilitate the study of other factors that can impose limitations to mixture analysis, such as matrix effects upon ionization and differences in ion transmission, accumulation, storage, and detection efficiencies.  相似文献   

13.
Charging of nanoparticles through electrospray has scarcely been explored. Spherical nanometer‐sized amphiphilic block copolymer nanoparticles with diameters ranging from ~65 to ~150 nm were electrosprayed and analysed by charge detection spectrometry. Herein, we explore the charging of these micellar nano‐objects by conducting a thorough study in different solvents, including pure water, and upon the addition of “supercharging” agents. The charge (z) of micellar nanoparticles electrosprayed from water solution is compared to the Rayleigh’s limiting charge (zR) of a charged water droplet of the same dimensions. An average ratio (z/zR) of 0.6–0.65 is observed for the micellar macro‐ions, supporting the charge residue mechanism, where the number of charges available to the micellar macro‐ion is limited by the number of charges on the nanodroplet, which is a function of the surface tension of the solvent. Also we show the possibility of increasing the charging of micellar nanoparticles in the negative mode by adding organic bases (in particular piperidine) to water/methanol solutions.  相似文献   

14.
A heated capillary inlet for an electrospray ionization mass spectrometry (ESI-MS) interface was compared with shorter versions of the inlet to determine the effects on transmission and ionization efficiencies for low-flow (nano) electrosprays. Five different inlet lengths were studied, ranging from 6.4 to 1.3 cm. As expected, the electrospray current transmission efficiency increased with decreasing capillary length due to reduced losses to the inside walls of the capillary. This increase in transmission efficiency with shorter inlets was coupled with reduced desolvation of electrosprayed droplets. Surprisingly, as the inlet length was decreased, some analytes showed little or no increase in sensitivity, while others showed as much as a 15-fold gain. The variation was shown to be at least partially correlated with analyte mobilities, with the largest gains observed for higher mobility species, but also affected by solution conductivity, flow rate, and inlet temperature. Strategies for maximizing sensitivity while minimizing biases in ion transmission through the heated capillary interface are proposed.  相似文献   

15.
The effects of two supercharging reagents, m-nitrobenzyl alcohol (m-NBA) and sulfolane, on the charge-state distributions and conformations of myoglobin ions formed by electrospray ionization were investigated. Addition of 0.4% m-NBA to aqueous ammonium acetate solutions of myoglobin results in an increase in the maximum charge state from 9+ to 19+, and an increase in the average charge state from 7.9+ to 11.7+, compared with solutions without m-NBA. The extent of supercharging with sulfolane on a per mole basis is lower than that with m-NBA, but comparable charging was obtained at higher concentration. Arrival time distributions obtained from traveling wave ion mobility spectrometry show that the higher charge state ions that are formed with these supercharging reagents are significantly more unfolded than lower charge state ions. Results from circular dichroism spectroscopy show that sulfolane can act as chemical denaturant, destabilizing myoglobin by ∼1.5 kcal/mol/M at 25 °C. Because these supercharging reagents have low vapor pressures, aqueous droplets are preferentially enriched in these reagents as evaporation occurs. Less evaporative cooling will occur after the droplets are substantially enriched in the low volatility supercharging reagent, and the droplet temperature should be higher compared with when these reagents are not present. Protein unfolding induced by chemical and/or thermal denaturation in the electrospray droplet appears to be the primary origin of the enhanced charging observed for noncovalent protein complexes formed from aqueous solutions that contain these supercharging reagents, although other factors almost certainly influence the extent of charging as well.  相似文献   

16.
An experimental investigation and theoretical analysis are reported on charge competition in electrospray ionization (ESI) and its effects on the linear dynamic range of ESI mass spectrometric (MS) measurements. The experiments confirmed the expected increase of MS sensitivities as the ESI flow rate decreases. However, different compounds show somewhat different mass spectral peak intensities even at the lowest flow rates, at the same concentration and electrospray operating conditions. MS response for each compound solution shows good linearity at lower concentrations and levels off at high concentration, consistent with analyte "saturation" in the ESI process. The extent of charge competition leading to saturation in the ESI process is consistent with the relative magnitude of excess charge in the electrospray compared to the total number of analyte molecules in the solution. This ESI capacity model allows one to predict the sample concentration limits for charge competition and the on-set of ionization suppression effects, as well as the linear dynamic range for ESI-MS. The implications for quantitative MS analysis and possibilities for effectively extending the dynamic range of ESI measurements are discussed.  相似文献   

17.
Although being an atmospheric pressure ion source, electrospray ionization (ESI) has rarely been used directly for ambient imaging mass spectrometry because the sample has to be introduced as liquid solution through the capillary. Instead of capillary, probe electrospray ionization (PESI), which has been developed recently, uses a solid needle as the sampling probe, as well as the electrospray emitter, and has been applied not only for liquid solutions but also for the direct sampling on wet samples. Biological tissues are composed of cells that contain 70–90% water, and when the surface is probed by the needle tip, the biological fluid adhering to the needle can be electrosprayed directly or assisted by additional solvent added onto the needle surface. Here, we demonstrate ambient imaging mass spectrometry of mouse brain section using PESI, incorporated with an auxiliary heated capillary sprayer. The solvent vapor generated from the sprayer condensed on the needle tip, re‐dissolving the adhered sample, and at the same time, providing an indirect means for needle cleaning. The histological sections were prepared by fixation using paraformaldehyde, and the spatial analysis was automated by maintaining an equal sampling depth into the sample in addition to raster scan. Phospholipids and galactosylceramides were readily detected from the mouse brain section in the positive ion mode, and were mapped with 60 µm lateral resolution to form mass spectrometric images. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(?-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q+15](-) was described as being a reaction between the solvent system and the radical anion, Q(?-). The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses.  相似文献   

19.
The fundamental aspects of charging in electrospray ionization (ESI) are hotly debated. In the present study, ESI charging of DNA oligonucleotides was explored in both positive (ESI+) and negative (ESI?) polarity using mass spectrometry detection. Single‐stranded 12‐mer CCCCAATTCCCC in buffer solution (aqueous NH4Ac, 100 mM) produced similar charge state distribution (CSD) in either ESI+ or ESI?. Similarity of CSD in ESI+ and ESI? was also observed for the double‐stranded 12‐mer CGCGAATTCGCG. By adding typical low‐vapor reagents (e.g. m‐nitro benzyl alcohol, m‐NBA; sulfolane) into the same buffer solution (<0.5% w/v), both CCCCAATTCCCC and CGCGAATTCGCG revealed strong supercharging (SC) effect in ESI?, while very little or no SC effect was observed in ESI+. With either sulfolane or m‐NBA, the CGCGAATTCGCG duplex dissociated into single strands in ESI?. No SC was observed in both ESI+ and ESI? for thermally denatured CGCGAATTCGCG duplex in NH4Ac buffer without the reagents. These findings are difficult to reconcile with the earlier model, which attributes SC in aqueous buffer solution to the conformational changes of analytes. Our observations suggest that the ionic strength of ESI droplets strongly affects the CSD of biopolymers such as DNA oligonucleotides and that SC effect is related to the depletion of ionic strength during the ESI process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
We report the first quantitative assessment of electrosprayed droplet/ion focusing enabled by the use of a voltage-assisted air amplifier between an electrospray ionization emitter and a hybrid linear ion trap Fourier transform ion cyclotron resonance mass spectrometer (ESI-LTQ-FT-ICR-MS). A solution of fluorescent dye was electrosprayed with a stainless steel mesh screen placed in front of the MS inlet capillary acting as a gas-permeable imaging plate for fluorescence spectroscopy. Without use of the air amplifier, no detectable FT-ICR signal was observed, as well as no detectable fluorescence on the screen upon imaging using a fluorescence scanner. When the air amplifier was turned ON while electrospraying the fluorescent dye, FT-ICR mass spectra with high signal to noise ratio were obtained with an average ion injection time of 21 ms for an AGC target value of 5 x 10(5). Imaging of the screen using a fluorescence scanner produced a distinct spot of cross-sectional area approximately 33.5 mm(2) in front of the MS inlet capillary. These experimental results provide direct evidence of aerodynamic focusing of electrosprayed droplets/ions enabled by an air amplifier, resulting in improved electrospray droplet/ion capture efficiency and reduced ion injection time. A second set of experiments was carried out to explore whether the air amplifier assists in desolvation. By electrospraying a mix of quaternary amines, ratios of increasingly hydrophobic molecules were obtained. Observation of the solvophobic effect associated with electrospray ionization resulted in a higher abundance of the hydrophobic molecule. This bias was eliminated when the air amplifier was turned ON and a response indicative of the respective component concentrations of the molecules in the bulk solution was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号