首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel metal-organic frameworks (MOFs) may lead to advances in adsorption and catalysis owing to their superior properties compared to traditional nanoporous materials. A combination of the grand canonical Monte Carlo method and configurational-bias Monte Carlo simulation was used to evaluate the adsorption isotherms of C4-C6 alkane isomer mixtures in IRMOF-1 and IRMOF-6. The amounts of adsorbed linear and branched alkanes increase with increasing pressure, and the amount of branched alkanes is larger than that of the linear ones. The locations of the alkane isomer reveal that the Zn4O clusters of the IRMOFs are the preferential adsorption sites for the adsorbate molecules. The interaction energy between the Zn4O cluster and the adsorbate is larger than that between the organic linker and the adsorbate. It was further confirmed that the Zn4O cluster plays a much more important role in adsorption by pushing a probe molecule into the pore at positions closer to the Zn4O cluster. It is difficult for branched alkane molecules to approach the Zn4O cluster of IRMOF-6 closely owing to strong spatial hindrance. In addition, the adsorption selectivity is discussed from the viewpoints of thermodynamics and kinetics, and the diffusion behavior of n-butane and 2-methylpropane were investigated to illustrate the relationship between diffusion and adsorption.  相似文献   

2.
金属有机框架材料的研究进展   总被引:1,自引:0,他引:1  
金属有机框架(metal-organic frameworks,MOFs)材料是一类由有机配体与金属中心经过自组装形成的具有可调节孔径的材料。与传统无机多孔材料相比,MOFs材料具有更大的比表面积,更高的孔隙率,结构及功能更加多样,因而已经被广泛应用于气体吸附与分离、传感器、药物缓释、催化反应等领域中。新兴材料的出现极大地促进了各个学科间的相互发展,本文综述了近年来MOFs材料的研究发展,包括MOFs材料自身的特点、国内外发展现状、应用领域以及复合MOFs材料的研究热点,并对今后的发展进行了展望。  相似文献   

3.
The adsorption of CO2 and CH4 in a mixed-ligand metal-organic framework (MOF) Zn 2(NDC) 2(DPNI) [NDC = 2,6-naphthalenedicarboxylate, DPNI = N, N'-di-(4-pyridyl)-1,4,5,8-naphthalene tetracarboxydiimide] was investigated using volumetric adsorption measurements and grand canonical Monte Carlo (GCMC) simulations. The MOF was synthesized by two routes: first at 80 degrees C for two days with conventional heating, and second at 120 degrees C for 1 h using microwave heating. The two as-synthesized samples exhibit very similar powder X-ray diffraction patterns, but the evacuated samples show differences in nitrogen uptake. From the single-component CO2 and CH4 isotherms, mixture adsorption was predicted using the ideal adsorbed solution theory (IAST). The microwave sample shows a selectivity of approximately 30 for CO2 over CH4, which is among the highest selectivities reported for this separation. The applicability of IAST to this system was demonstrated by performing GCMC simulations for both single-component and mixture adsorption.  相似文献   

4.
This perspective discusses the use of sequential self-assembly in the construction of metal-organic frameworks through the systematic insertion, replacement, and removal of organic structural building units. We review previous works that can be classified as such sequential self-assembly in multidimensional MOFs.  相似文献   

5.
A personal perspective recognising the developments in the field of metal-organic frameworks, of where the challenges currently lie and the opportunities that are on the horizon.  相似文献   

6.
The gas adsorption and CO2 separation properties of 9 different metal-organic frameworks (MOFs) have been modelled with grand canonical Monte Carlo (GCMC) adsorption simulations. Adsorption of both pure gases and gas mixtures has been studied. MOFs are shown to have high selectivity for polar gases such as CO2 over non-polar gases such as N2. Selectivity of one polar gas from another can be altered by changing the polarity of the framework, pore geometry and also temperature. Often features that lead to good selectivity of CO2 from N2 also lead to poor selectivity of CO2 from H2O.  相似文献   

7.
Diffusion-controlled luminescence quenching of a phosphorescent metal-organic framework built from the Ru(bpy)(3)(2+)-derived bridging ligand (MOF-1) was studied using a series of amines of different sizes as quenchers. The dynamics of amine diffusion into solvent-filled MOF-1 channels was probed by modeling time-dependent luminescence quenching data, which provide quantitative diffusion coefficients for the amine quenchers. Triethylamine, tripropylamine, and tributylamine were found to follow Fickian diffusion with a diffusivity of (1.1 ± 0.2) × 10(-13), (4.8 ± 1.2) × 10(-14), and (4.0 ± 0.4) × 10(-14) m(2)/s, respectively. Diisopropylethylamine (DIPEA), on the other hand, was found to be too large to enter the MOF channels. Despite its size, 4-MeOPhNPh(2) can enter the MOF channels via a slow, complicated framework/guest intercalation process to result in extensive framework distortion as revealed by powder X-ray diffraction. This work represents the first quantitative study of the dynamics of molecular diffusion into solvent-filled MOF channels. Such quantitative information on molecular diffusion in MOFs is of fundamental importance to many of their potential applications (e.g., heterogeneous catalysis).  相似文献   

8.
Hydrogen sorption in functionalized metal-organic frameworks   总被引:12,自引:0,他引:12  
Five porous metal-organic frameworks based on linking zinc oxide clusters with benzene-1,4-dicarboxylate, naphthalene-2,6-dicarboxylate, 4,5,9,10-tetrahydropyrene-2,7-dicarboxylate, 2,3,5,6-tetramethylbenzene-1,4-dicarboxylate, or benzene-1,3,5-tris(4-benzoate) were synthesized in gram-scale quantities to measure their hydrogen uptake properties. Hydrogen adsorption isotherms measured at 77 K show a distinct dependence of uptake on the nature of the link. At 1 atm, the materials sorb between 4.2 and 9.3 molecules of H2 per formula unit. The results imply a trend in hydrogen uptake with the number of rings in the organic moiety.  相似文献   

9.
10.
The metal-organic frameworks MIL-47 (V(IV)O{O(2)C-C(6)H(4)-CO(2)}) and MIL-53(Al) (Al(III)(OH)·{O(2)C-C(6)H(4)-CO(2)}) are capable of separating ethylbenzene and styrene. Both materials adsorb up to 20-24 wt % of both compounds. Despite the fact that they have identical building schemes, the reason for preferential adsorption of styrene compared to ethylbenzene is very different for the two frameworks. For MIL-47, diffraction experiments reveal that styrene is packed inside the pores in a unique, pairwise fashion, resulting in separation factors as high as 4 in favor of styrene. These separation factors are independent of the total amount of adsorbate offered. This is due to co-adsorption of ethylbenzene in the space left available between the packed styrene pairs. The separation is of a non-enthalpic nature. On MIL-53, the origin of the preferential adsorption of styrene is related to differences in enthalpy of adsorption, which are based on different degrees of framework relaxation. The proposed adsorption mechanisms are in line with the influence of temperature on the separation factors derived from pulse chromatography: separation factors are independent of temperature for MIL-47 but vary with temperature for MIL-53. Finally, MIL-53 is also capable of removing typical impurities like o-xylene or toluene from styrene-ethylbenzene mixtures.  相似文献   

11.
12.
Tunability of band gaps in metal-organic frameworks   总被引:1,自引:0,他引:1  
CK Lin  D Zhao  WY Gao  Z Yang  J Ye  T Xu  Q Ge  S Ma  DJ Liu 《Inorganic chemistry》2012,51(16):9039-9044
The tunability of the band gaps in Zn-based metal-organic frameworks (MOFs) has been experimentally demonstrated via two different approaches: changing the cluster size of the secondary building unit (SBU) or alternating the conjugation of the organic linker.  相似文献   

13.
Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal-organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn(4)O(BDC)(3) (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at room temperature in only 15 min under cathodic potential. Although many crystalline phases are known in the Zn(2+)/BDC(2-) system, MOF-5 is the only observed crystalline MOF phase under these conditions. This fast and mild method of synthesizing MOFs is amenable to direct surface functionalization and could impact applications requiring conformal coatings of microporous MOFs, such as gas separation membranes and electrochemical sensors.  相似文献   

14.
A family of highly porous homochiral, racemic, and meso metal-organic frameworks (MOFs) were synthesized based on a new elongated tetra-carboxylate ligand and the copper paddle-wheel building units. These MOFs exhibited remarkable catenation isomerism that is controlled by both chirality of the bridging ligand and the size of solvent molecules. The ability to manipulate framework interpenetration is key to future synthesis of mesoporous homochiral MOFs which hold great promise in heterogeneous asymmetric catalysis and chiral separations.  相似文献   

15.
Chiral metal–organic frameworks with a three‐dimensional network structure and wide‐open pores (>30 Å) were obtained by using chiral trifunctional linkers and multinuclear zinc clusters. The linkers, H3ChirBTB‐n, consist of a 4,4′,4′′‐benzene‐1,3,5‐triyltribenzoate (BTB) backbone decorated with chiral oxazolidinone substituents. The size and polarity of these substituents determines the network topology formed under solvothermal synthesis conditions. The resulting chiral MOFs adsorb even large molecules from solution. Moreover, they are highly active Lewis acid catalysts in the Mukaiyama aldol reaction. Due to their chiral functionalization, they show significant levels of enantioselectivity, thereby proving the validity of the modular design concept employed.  相似文献   

16.
17.
Reaction temperature is one of the key parameters in the synthesis of metal-organic frameworks (MOFs). Though there is no convergence with regard to the various experimental parameters, reaction temperature has been found to have remarkable influence on the formation and structure of MOFs, especially toward the control of topology and dimensionality of the MOF structures. Theoretically, the reaction temperature affects directly the reaction energy barrier in reaction thermodynamics and the reaction rate in the reaction kinetics. This review aims to show the influence of reaction temperature on crystal growth/assembly, structural modulation and transformation of MOFs, and to provide primary information and insights into the design and assernblv of desired MOFs.  相似文献   

18.
19.
A magnetic functionalization of microcrystalline MOF particles was realized using magnetic iron oxide particles. Such magnetic MOFs can be separated using a static magnetic field after use in catalytic processes and heated by an external alternating magnetic field to trigger desorption of encaged drug molecules.  相似文献   

20.
张晓琼  汪彤  王培怡  姚伟  丁明玉 《色谱》2016,34(12):1176-1185
金属有机骨架(MOFs)是一类由无机金属离子与有机配体自组装形成的新型有机-无机杂化多孔材料,因具有比表面积超高、结构多样、热稳定性良好、孔道尺寸和性质可调等优势,在分离领域表现出重要的应用价值。然而,采用传统方法制备的MOFs多为粒径在微米或亚微米尺度的晶体,且颗粒形貌不规则,因此限制了MOFs在样品前处理和色谱固定相等领域的应用和发展。构建基于MOFs的复合材料是弥补MOFs应用缺陷的一项有效措施,有望在保留MOFs优越的分离特性的同时,引入基体材料的特定性能。该文简要综述了近年来MOFs及其复合材料在吸附、样品前处理和色谱固定相等分离领域中的应用进展,并对MOFs在分离科学中的应用前景做出展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号