首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the outer surface of core/shell nanocrystals on the fluorescence quantum yield was observed for InAs/InP and InAs/CdSe core/shells (see picture). For InAs/CdSe we observed substantial enhancement of the fluorescence quantum yield compared to the InAs core, and up to two times larger than the laser dye IR-140. Such core/shell nanocrystals have potential use as biological fluorescent markers in the near IR spectral range.  相似文献   

2.
This paper presents a mechanistic study on the doping of CdS/ZnS core/shell semiconductor nanocrystals with Mn based on a three-step synthesis, which includes host-particle synthesis, Mn-dopant growth, and ZnS-shell growth. We used a combination of electron paramagnetic resonance spectroscopy (EPR) and inductively coupled plasma atomic emission spectroscopy (ICP) to monitor Mn-doping level and growth yield during doping synthesis at both the dopant-growth and ZnS-shell-growth steps. First, our kinetic study shows that Mn adsorption onto the nanocrystal surface includes the formation of weakly and strongly bound Mn. The formation of weakly bound Mn is associated with a chemical equilibrium between adsorbed Mn species on the nanocrystal surface and free Mn species in growth solution, while the formation of strongly bound Mn exhibits first-order kinetics with an activation-energy barrier of 211 +/- 13 kJ/mol. Second, our results demonstrate that both weakly and strongly bound Mn can be removed from the surface of nanocrystals during ZnS-shell growth. The replacement of strongly bound Mn requires a higher temperature than that of weakly bound Mn. The yield of the replacement of strongly bound Mn is strongly dependent on the temperature of ZnS-shell growth. Third, our results show that the Mn-growth yield is not dependent on the size and crystal structure of nanocrystals. All together, these results suggest a mechanism in which nanocrystal doping is determined by the chemical kinetics of three activation-controlled processes: dopant adsorption, replacement, and ZnS-shell growth.  相似文献   

3.
Successive ion layer adsorption and reaction (SILAR) originally developed for the deposition of thin films on solid substrates from solution baths is introduced as a technique for the growth of high-quality core/shell nanocrystals of compound semiconductors. The growth of the shell was designed to grow one monolayer at a time by alternating injections of air-stable and inexpensive cationic and anionic precursors into the reaction mixture with core nanocrystals. The principles of SILAR were demonstrated by the CdSe/CdS core/shell model system using its shell-thickness-dependent optical spectra as the probes with CdO and elemental S as the precursors. For this reaction system, a relatively high temperature, about 220-240 degrees C, was found to be essential for SILAR to fully occur. The synthesis can be readily performed on a multigram scale. The size distribution of the core/shell nanocrystals was maintained even after five monolayers of CdS shell (equivalent to about 10 times volume increase for a 3.5 nm CdSe nanocrystal) were grown onto the core nanocrystals. The epitaxial growth of the core/shell structures was verified by optical spectroscopy, TEM, XRD, and XPS. The photoluminescence quantum yield (PL QY) of the as-prepared CdSe/CdS core/shell nanocrystals ranged from 20% to 40%, and the PL full-width at half-maximum (fwhm) was maintained between 23 and 26 nm, even for those nanocrystals for which the UV-vis and PL peaks red-shifted by about 50 nm from that of the core nanocrystals. Several types of brightening phenomena were observed, some of which can further boost the PL QY of the core/shell nanocrystals. The CdSe/CdS core/shell nanocrystals were found to be superior in comparison to the highly luminescent CdSe plain core nanocrystals. The SILAR technique reported here can also be used for the growth of complex colloidal semiconductor nanostructures, such as quantum shells and colloidal quantum wells.  相似文献   

4.
A complex InAs/CdSe/ZnSe core/shell1/shell2 (CSS) structure is synthesized, where the intermediate CdSe buffer layer decreases strain between the InAs core and the ZnSe outer shell. This structure leads to significantly improved fluorescence quantum yield as compared to previously prepared core/shell structures and enables growth of much thicker shells. The shell growth is done using a layer-by-layer method in which the shell cation and anion precursors are added sequentially allowing for excellent control, and a good size distribution is maintained throughout the entire growth process. The CSS structure is characterized using transmission electron microscopy, as well as by X-ray diffraction and X-ray photoelectron spectroscopy which provide evidence for shell growth. The quantum yield for CSS with small InAs cores reaches over 70%-exceptional photoluminescence intensity for III-V semiconductor nanocrystals. In larger InAs cores there is a systematic decrease in the quantum yield, with a yield of approximately 40% for intermediate size cores down to a few percent in large cores. The CSS structures also exhibit very good photostability, vastly improved over those of organically coated cores, and transformation into water environment via ligand exchange is performed without significant decrease of the quantum yield. These new InAs/CdSe/ZnSe CSS nanocrystals are therefore promising near-IR chromophores for biological fluorescence tagging and optoelectronic devices.  相似文献   

5.
Synthesis and characterization of highly luminescent ZnS-passivated CdS:Mn (CdS:Mn/ZnS) core/shell structured nanocrystals are reported. Mn-doped CdS core nanocrystals are produced ranging from 1.5 to 2.3 nm in diameter with epitaxial ZnS shell of wider band gap via a reverse micelle process. UV irradiation-stimulated photo-oxidation of the ZnS shell results in formation of sulfate (ZnSO(4)) as determined by x-ray photoelectron spectroscopy, which increases the photoluminescence emission intensity and subsequent photostability. Luminescent relaxation lifetime data present two different decay components, consisting of slow decay emission from the Mn center and a fast decay emission from a defect-related center. The impact of the density of surface defect states upon the emission spectra is discussed.  相似文献   

6.
Here we demonstrate the aqueous synthesis of colloidal nanocrystal heterostructures consisting of the CdTe core encapsulated by CdS/ZnS or CdSe/ZnS shells using glutathione (GSH), a tripeptide, as the capping ligand. The inner CdTe/CdS and CdTe/CdSe heterostructures have type-I, quasi-type-II, or type-II band offsets depending on the core size and shell thickness, and the outer CdS/ZnS and CdSe/ZnS structures have type-I band offsets. The emission maxima of the assembled heterostructures were found to be dependent on the CdTe core size, with a wider range of spectral tunability observed for the smaller cores. Because of encapsulation effects, the formation of successive shells resulted in a considerable increase in the photoluminescence quantum yield; however, identifying optimal shell thicknesses was required to achieve the maximum quantum yield. Photoluminescence lifetime measurements revealed that the decrease in the quantum yield of thick-shell nanocrystals was caused by a substantial decrease in the radiative rate constant. By tuning the diameter of the core and the thickness of each shell, a broad range of high quantum yield (up to 45%) nanocrystal heterostructures with emission ranging from visible to NIR wavelengths (500-730 nm) were obtained. This versatile route to engineering the optical properties of nanocrystal heterostructures will provide new opportunities for applications in bioimaging and biolabeling.  相似文献   

7.
锰掺杂的核壳结构CdS:Mn/ZnS纳米晶体由胶体化学方法制备,并将该纳米晶体所形成的薄膜夹在两层Ta2O5薄膜中间,形成交流薄膜电致发光器件。该器件的电致发光强度随着环境温度的升高呈现先增强后减小的变化规律,并且Mn杂质的位置会影响其电致发光谱。  相似文献   

8.
锰掺杂的核壳结构CdS:Mn/ZnS纳米晶体由胶体化学方法制备,并将该纳米晶体所形成的薄膜夹在两层Ta2O5薄膜中间,形成交流薄膜电致发光器件.该器件的电致发光强度随着环境温度的升高呈现先增强后减小的变化规律,并且Mn杂质的位置会影响其电致发光谱.  相似文献   

9.
Multiple CdSe and ZnSe semiconductor shells were grown on PbSe semiconductor spherical cores with monolayer control. For CdSe shell coating, we found that there was little room to further increase the quantum yields of freshly-made high-quality PbSe nanocrystals that already owned very high initial values because of their good surface status; but there was great improvement for the PbSe nanocrystals with low initial quantum yields because of the poor surface status. Nonetheless, the quantum yield for the latter case could not reach the former's value. Additional ZnSe shells on PbSe/CdSe could further increase the quantum yield and protect the nanocrystals from air oxidation. The observed phenomena in the synthesis of the PbSe/CdSe and PbSe/CdSe/ZnSe core/shell structures were explained through the carrier wave function expansion and the surface polarization.  相似文献   

10.
We report a two-step synthesis of highly luminescent CdS/ZnSe core/shell nanocrystals (emission quantum yields up to 50%) that can produce efficient spatial separation of electrons and holes between the core and the shell (type-II localization regime). Our synthesis involves fabrication of cubic-singony CdS core particles that are subsequently overcoated with a layer of ZnSe in the presence of surfactant-ligands in a noncoordinating solvent. Studies of different growth regime of the ZnSe shell indicate that one approach to obtaining high emission efficiencies is through alloying the CdS/ZnSe interface with CdSe, which leads to the formation of an intermediate ZnCdSe layer with a graded composition. We perform theoretical modeling of these core/shell nanocrystals using effective mass approximation and applying first-order perturbation theory for treating both direct electron-hole coupling and the core/shell interface-polarization effects. Using this model we determine the range of geometrical parameters of the core/shell structures that result in a type-II localization regime. We further applied this model to evaluate the degree of electron-hole spatial separation (quantified in terms of the electron-hole overlap integral) based on measured emission wavelengths. We also discuss the potential applicability of these nanocrystals in lasing technologies and specifically the possibility of single-exciton optical gain in type-II nanostructures.  相似文献   

11.
以巯基乙醇为修饰剂,在水溶液中合成了稳定的CdSe/CdS纳米晶,应用单因素法和多目标单纯形法探索合成条件。通过透射电镜观察所合成的纳米晶的形貌和大小,用紫外-可见吸收光谱和荧光光谱对其光学特性进行了表征。并且以L-色氨酸荧光量子产率0.14为标准,测量了合成的CdSe/CdS纳米晶的荧光量子产率为0.37。  相似文献   

12.
We report on the preparation and structural characterization of CdSe nanocrystals, which are covered by a multishell structure from CdS and ZnS. By using the newly developed successive ion layer adhesion and reaction (SILAR) technique, we could gradually change the shell composition from CdS to ZnS in the radial direction. Because of the stepwise adjustment of the lattice parameters in the radial direction, the resulting nanocrystals show a high crystallinity and are almost perfectly spherical, as was investigated by X-ray diffraction and electron microscopy. Also, due to the radial increase of the respective valence- and conduction-band offsets, the nanocrystals are well electronically passivated. This leads to a high fluorescence quantum yield of 70-85% for the amine terminated multishell particles in organic solvents and a quantum yield of up to 50% for mercapto propionic acid-covered particles in water. Finally, we present experimental results that substantiate the superior photochemical and colloidal stability of the multishell particles.  相似文献   

13.
We reported a facile route for overcoating CdS and ZnS shells around colloidal CdSe core nanocrystals. To synthesize such double shelled core/shell nanocrystals, first, CdSe core nanocrystals were prepared in a much “greener” and cheap route, which did not involve the use of hazardous and expensive trioctylphosphine. Then, a low-cost and labor-saving route was adopted for the CdS and ZnS shell growth with the use of thermal decomposition of commercial available air stable single-source precursors cadmium diethyldithio-carbamate and zinc diethyldithiocarbamate in a non-coordinating solvent at intermediate temperatures. Powder X-ray diffraction patterns and transmission electron microscopy images confirm the epitaxial growth of the shell in the core/shell nanocrystals. The photoluminescence quantum yield of the resulting CdSe/CdS/ZnS core/shell nanocrystals can be as high as 90% in organic media and up to 60% after phase transfer into aqueous media. By varying the size of CdSe cores, the emission wavelength of the obtained core/shell nanostructures can span from 554 to 636 nm.  相似文献   

14.
以溶于十八烯的Se作为Se前驱体,在无膦条件下制备得到了具有较高量子产率的Mn:ZnSe纳米晶.为了进一步提高纳米晶的稳定性和发光强度,运用外延生长的方法进行ZnS壳层包覆并得到了具有核-壳结构的Mn:ZnSe/ZnS纳米晶.X射线衍射、透射电子显微镜及吸收和荧光光谱测试结果表明,该方法合成的Mn:ZnSe纳米晶以及核-壳结构Mn:ZnSe/ZnS纳米晶均为闪锌矿结构,具有良好的单分散性,包覆ZnS外壳层后量子产率可达到60%以上.此外,对ZnS壳层厚度和Mn2+的掺杂量对Mn:ZnSe/ZnS纳米晶发光强度的影响及发光机制也进行了初步讨论.  相似文献   

15.
Manganese-doped and undoped ZnO nanocrystals were synthesized via wet-chemical methods. The structure, physico-chemical, electrical and optical properties of the as-prepared products were characterized by using the X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PLS) and electrochemical impedance spectroscopy (EIS) techniques. The photocatalytic activity of Mn-doped ZnO nanocrystal (mixed phases) has been examined under the visible-irradiation by using photocatalytic oxidation of rhodamine B (RhB) dye as a model reaction, and compared with that of known system such as pure ZnO nanocrystal (single-phase). The results showed that Mn doped ZnO nanocrystals bleaches RhB much faster than undoped ZnO upon its exposure to the visible light. The enhancement of the photocatalytic activity was discussed as an effect due to the Mn doping in the Mn-doped ZnO semiconductors, which shifts the optical absorption edge to the visible region and alters the electron-hole pair separation conditions. These factors are responsible for the higher photocatalytic performance of Mn/ZnO composites.  相似文献   

16.
Here we report a new "green" method to synthesize Zn(1-x)Cd(x)Se (x = 0-1) and stable red-green-blue tricolor Zn(1-x)Cd(x)Se core/shell nanocrystals using only low cost, phosphine-free and environmentally friendly reagents. The first excitonic absorption peak and photoluminescence (PL) position of the Zn(1-x)Cd(x)Se nanocrystals (the value of x is in the range 0.005-0.2) can be fixed to any position in the range 456-540 nm. There is no red or blue shift in the entire reaction process. Three similar sizes of alloyed Zn(1-x)Cd(x)Se nanocrystals with blue, green, and yellow emissions were successfully selected as cores to synthesize high quality blue, green, and red core/shell nanocrystal emitters. For the synthesis of core/shell nanocrystals with a high quantum yield (QY) and stability, the selection of shell materials has been proven to be very important. Therefore, alternative protocols have been used to optimize thick shell growth. ZnSe/ZnSe(x)S(1-x) and CdS/Zn(1-x)Cd(x)S have been found as an excellent middle multishell to overcoat between the alloyed Zn(1-x)Cd(x)Se core and ZnS outshell. The QYs of the as-synthesized core/shell alloyed Zn(1-x)Cd(x)Se nanocrystals can reach 40-75%. The Cd content is reduced to less than 0.1% for Zn(1 -x)Cd(x)Se core/shell nanocrystals with emissions in the range 456-540 nm. More than 15 g of high quality Zn(1-x)Cd(x)Se core/shell nanocrystals were prepared successfully in a large scale, one-pot reaction. Importantly, the emissions of such thick multishell nanocrystals are not susceptible to ligand loss and stability in various physiological conditions.  相似文献   

17.
Upconversion core/shell nanocrystals with different mean sizes ranging from 15 to 45 nm were prepared via a modified synthesis procedure based on anhydrous rare‐earth acetates. All particles consist of a core of NaYF4:Yb,Er, doped with 18 % Yb3+ and 2 % Er3+, and an inert shell of NaYF4, with the shell thickness being equal to the radius of the core particle. Absolute measurements of the photoluminescence quantum yield at a series of different excitation power densities show that the quantum yield of 45 nm core/shell particles is already very close to the quantum yield of microcrystalline upconversion phosphor powder. Smaller core/shell particles prepared by the same method show only a moderate decrease in quantum yield. The quantum yield of 15 nm core/shell particles, for instance, is reduced by a factor of three compared to the bulk upconversion phosphor at high power densities (100 W cm?2) and by approximately a factor of 10 at low power densities (1 W cm?2).  相似文献   

18.
Relatively monodisperse and highly luminescent Mn(2+)-doped zinc blende ZnSe nanocrystals were synthesized in aqueous solution at 100 °C using the nucleation-doping strategy. The effects of the experimental conditions and of the ligand on the synthesis of nanocrystals were investigated systematically. It was found that there were significant effects of molar ratio of precursors and heating time on the optical properties of ZnSe:Mn nanocrystals. Using 3-mercaptopropionic acid as capping ligand afforded 3.1 nm wide ZnSe:Mn quantum dots (QDs) with very low surface defect density and which exhibited the Mn(2+)-related orange luminescence. The post-preparative introduction of a ZnS shell at the surface of the Mn(2+)-doped ZnSe QDs improved their photoluminescence properties, resulting in stronger emission. A 2.5-fold increase in photoluminescence quantum yield (from 3.5 to 9%) and of Mn(2+) ion emission lifetime (from 0.62 to 1.39 ms) have been observed after surface passivation. The size and the structure of these QDs were also corroborated by using transmission electron microscopy, energy dispersive spectroscopy, and X-ray powder diffraction.  相似文献   

19.
We report an efficient synthesis of copper indium sulfide nanocrystals with strong photoluminescence in the visible to near-infrared. This method can produce gram quantities of material with a chemical yield in excess of 90% with minimal solvent waste. The overgrowth of as-prepared nanocrystals with a few monolayers of CdS or ZnS increases the photoluminescence quantum efficiency to > 80%. On the basis of time-resolved spectroscopic studies of core/shell particles, we conclude that the emission is due to an optical transition that couples a quantized electron state to a localized hole state, which is most likely associated with an internal defect.  相似文献   

20.
Q Dai  G Zhang  P Liu  J Wang  J Tang 《Inorganic chemistry》2012,51(17):9232-9239
CdMoO(4):Mn nanocrystals with a tetragonal crystal structure were prepared by aqueous coprecipitation method at a low temperature of 2 °C under different pH values. The size of the CdMoO(4):Mn nanocrystals of spherical morphology increases with the Mn dopant concentration from 35 to 55 nm for pH = 4. The morphology could be tuned from nanocrystals to microstructures consisting of smaller nanoparticles by the Mn concentration when the pH value of the precursor was increased to 8. The thermal stability of the luminescence and magnetic properties of the Mn-doped samples also depend on the pH and the doping level. The effects of the pH and dopant on the luminescence and magnetic properties, including magnetic susceptibility and electron paramagnetic resonance, were investigated. This approach contributes to better understanding of aqueous chemistry methods to control the growth of nanocrystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号