首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study is carried out to investigate flow characteristics of confined twin jets issuing from the lower surface and impinging normally on the upper surface. Pressure distributions on the impingement and confinement plates were obtained for Reynolds numbers ranging from 30,000 to 50,000, nozzle-to-plate spacing (H/D) in the range of 0.5-4 and jet-to-jet spacing (L/D) in the range of 0.5-2. Smoke-wire technique was used to visualize the flow behavior. The effects of Reynolds number, nozzle-to-plate spacing and jet-to-jet spacing on the flow structure are examined. The subatmospheric regions occur on both impingement and confinement plates at the nozzle-to-plate spacing up to 1 for all studied Reynolds numbers and jet-to-jet spacings in consideration. They lie nearly up to the same radial location at both surfaces and move radially outward from the stagnation points with increasing nozzle-to-plate spacing and jet-to-jet spacing. It is concluded that there exists a relation between the subatmospheric regions and peaks in heat transfer coefficients for low spacings in the impinging jets.  相似文献   

2.
A numerical study of confined jets in a cylindrical duct is carried out to examine the performance of two recently proposed turbulence models: an RNG-based K-? model and a realizable Reynolds stress algebraic equation model. The former is of the same form as the standard K-? model but has different model coefficients. The latter uses an explicit quadratic stress-strain relationship to model the turbulent stresses and is capable of ensuring the positivity of each turbulent normal stress. The flow considered involves recirculation with unfixed separation and reatachment points and severe adverse pressure gradients, thereby providing a valuable test of the predictive capability of the models for complex flows. Calculations are performed with a finite volume procedure. Numerical credibility of the solutions is ensured by using second-order-accurate differencing schemes and sufficiently fine grids. Calculations with the standard K-? model are also made for comparison. Detailed comparisons with experiments show that the realizable Reynolds stress algebraic equation model consistently works better than does the standard K-? model in capturing the essential flow features, while the RNG-based K-? model does not seem to give improvements over the standard K-? model under the flow conditions considered.  相似文献   

3.
Experimental results are presented for characteristics of impingement heat transfer caused by three slot jets. Experimental values were obtained for the dimensionless distance H = 0.5−3, dimensionless pitch P = 6−16, and Reynolds number Re = 500−8000. For laminar impinging flow, they were compared with numerical results. For turbulent impinging flow, two peaks of the local Nusselt number were obtained behind the second nozzle. The position of the second peak approached the nozzle as the space between nozzle and impinged surface decreased. The average Nusselt number between the central and second nozzles was determined from the ratio P/H and the Reynolds number based on the pitch of the nozzles.  相似文献   

4.
Smoke–wire flow visualization is used to investigate the behavior of a round jet issuing from a straight tube and impinging on a convex surface. Video analysis of the impinging jet shows the initiation and growth of ring vortices in the jet shear layer and their interaction with the cylindrical surfaces. Effects of relative curvature, nozzle-to-surface distance, and Reynolds number on vortex initiation, vortex separation from the surface and vortex breakup are described. Examples of vortex merging are discussed.  相似文献   

5.
The disintegration of turbulent liquid jets in gases, a process termed turbulent primary breakup, has many industrial applications, especially in liquid injection systems whose injector internal flow results in enhanced turbulence generation. An investigation was carried out by using X-ray diagnostics at the Advanced Photon Source (APS) facility of Argonne National Laboratory on two injectors with a smooth entry followed by round passage with different length-to-diameter ratios of 10 and 40, operating at the same injection speed. The test matrix was designed to eliminate cavitation and to isolate the effect of length/diameter ratio of the injector passage and to determine the importance of jet turbulence compared to aerodynamic forces. The X-ray diagnostics used allowed the surface and internal topography of liquid jets to be visualized and the spatial distribution of the surface ligaments to be revealed in the near-injector region. The present results show that the separation distance between a ligament and its neighbors depends on the ligament sizes, and the injector length/diameter ratio affects the rates of breakup.  相似文献   

6.
An experimental investigation is performed to study the effect of the finned surfaces and surfaces with vortex generators on the local heat transfer coefficient between impinging circular air jet and flat plate. Reynolds number is varied between 7000 and 30,000 based on the nozzle exit condition and jet to plate spacing between 0.5 and 6 nozzle diameters. Thermal infrared imaging technique is used for the measurement of local temperature distribution on the flat plate. Fins used are in the form of cubes of 2 mm size spaced at a pitch of 5 mm on the target plate and hexagonal prism of side 2.04 mm and height of 2 mm spaced at a pitch of 7.5 mm. Vortex generators in the form of a equilateral triangle of side 4 mm are used. Effect of number of rows of vortex generators, radius of a row, number of vortex generators in a row and inclination angle (i.e., the angle between the plane of the target plate and the plane of the vortex generators) on Nusselt number is studied. It is observed that the heat transfer coefficient between the impinging jet and the target plate is sensitive to the shape of the fin. The increase in the heat transfer coefficient up to 77% depending on the shape of the fin, nozzle plate spacing and the Reynolds number is observed. The augmentation in the heat transfer for the surfaces vortex generators are higher than that of the finned surfaces. The heat transfer augmentation in case of vortex generator is as high as 110% for a single row of six vortex generators at a radius of 1 nozzle diameter as compared to the smooth surface at a given nozzle plate spacing of 1 nozzle diameter and a Reynolds number of 25,000 at extreme radial location.  相似文献   

7.
Turbulent mixing takes an important role in chemical engineering, especially when the chemical reaction is fast compared to the mixing time. In this context a detailed knowledge of the flow field, the distribution of turbulent kinetic energy (TKE) and its dissipation rate is important, as these quantities are used for many mixing models. For this reason we conduct a direct numerical simulation (DNS) of a confined impinging jet reactor (CIJR) at Re = 500 and Sc = 1. The data is compared with particle image velocimetry (PIV) measurements and the basic flow features match between simulation and experiment. The DNS data is analysed and it is shown that the flow is dominated by a stable vortex in the main mixing duct. High intensities of turbulent kinetic energy and dissipation are found in the impingement zone which decrease rapidly towards the exit of the CIJR. In the whole CIJR the turbulence is not in equilibrium. The strong mixing in the impingement zone leads to a rapid development of a monomodal PDF. Due to the special properties of the flow field, a bimodal PDF is generated in cross-sections downstream the impingement zone, that slowly relaxes under relaminarising conditions. The time required for meso-mixing is dominating the overall mixing performance.  相似文献   

8.
Measurements of flow disturbances in the downstream region of modeled stenoses in a rigid tube, with upstream pulsatile flow are reported. Experiments were conducted over physiologically relevant mean Reynolds numbers of 600; based on the tube diameter and the time-averaged value of upstream centerline velocity. Contoured constrictions with 25%, 50% and 75% area reductions were investigated and velocity data were obtained from ensemble averaging techniques (phase-locked waveform). Experimental data over extensive spatial regions of poststenotic fields were taken, employing a two-component laser Doppler velocimeter LDV. Constant time sampling techniques for performing data or frequency analyses were used to avoid velocity bias and to study the evolution of poststenotic flow disturbances. It is found that different types of flow disturbances exist downstream of the constriction. Data analysis methods with the aid of flow visualization allow accurate classification of the disturbances which are sensitive indicators of mild to moderate constrictions. Although the present study was motivated by a biological situation, sufficient data were reported in detail that they may also be used by investigators working in computational fluid dynamics.  相似文献   

9.
The flow and temperature fields of a turbulent impinging jet are rather complex. In order to accurately describe the flow and heat-transfer process, two important factors that must be taken into account are the turbulence model and the wall function. Several turbulence models, including κ–? turbulence models, κ–ω turbulence models, low-Re turbulence models, the κ–κl–ω turbulence model, the Transition SST turbulence model, the V2F turbulence model and the RSM turbulence model, are examined and compared to experimental data. Furthermore, for the near wall region, various wall functions are presented for comparison and they include the standard wall function, the scale wall function, the non-equilibrium wall function and the enhanced wall function. The distribution features of velocity, turbulent kinetic energy and Nusselt number are determined in order to provide a reliable reference for the multiphase impinging jet in the future.  相似文献   

10.
Dispersion and surface deposition of charged particles by gas-solids jets in confined chambers are constantly encountered in many industrial applications such as in electrostatic precipitation and dry powder coating processes.Understanding and control of flow patterns and trajectories of charged particles are important to the optimal design and operation of such devices.In this study,modeling of flow fields and particle trajectories of dilute gas-solid two-phase flows with charged particles in confined cham...  相似文献   

11.
Hybrid RANS/LES of flow and heat transfer in round impinging jets   总被引:1,自引:0,他引:1  
Fluid flow and convective heat transfer predictions are presented of round impinging jets for several combinations of nozzle-plate distances H/D = 2, 6 and 13.5 (where D is the nozzle diameter) and Reynolds numbers Re = 5000, 23,000 and 70,000 with the newest version of the k-ω model of Wilcox (2008) and three hybrid RANS/LES models. In the RANS mode of the hybrid RANS/LES models, the k-ω model is recovered. Three formulations are considered to activate the LES mode. The first model is similar to the hybrid models of Davidson and Peng (2003) and Kok et al. (2004). The turbulent length scale is replaced by the grid size in the destruction term of the k-equation and in the definition of the RANS eddy viscosity. As grid size, a maximum measure of the hexahedral grid cell is used. The second model has the same k-equation, but the eddy viscosity is the minimum of the k-ω eddy viscosity and the Smagorinsky eddy viscosity, following a proposal by Batten et al. (2004). The Smagorinsky eddy viscosity is formed with the cube root of the cell volume. The third model has, again, the same k-equation, but has an eddy viscosity which is an intermediate between the eddy viscosities of the first and second models. This is reached by using the cube root of the cell volume in the eddy viscosity formula of the first model.The simulation results are compared with experimental data for the high Reynolds number cases Re = 23,000 and Re = 70,000 and LES data for the low-Reynolds number case Re = 5000. The Reynolds numbers are defined with the nozzle diameter and the bulk velocity at nozzle outlet. At low nozzle-plate distance (the impingement plate is in the core of the jet), turbulent kinetic energy is overpredicted by RANS in the stagnation flow region. This leads to overprediction of the heat transfer rate along the impingement plate in the impact zone. At high nozzle-plate distance (the impingement plate is in the mixed-out region of the jet), the turbulence mixing is underpredicted by RANS in the shear layer of the jet which gives a too high length of the jet core. This also results in overprediction of the heat transfer rate in the impingement zone caused by too big temperature gradients at impingement.All hybrid RANS/LES models are able to correct the heat transfer overprediction of the RANS model. For good predictions at low nozzle-plate distance, it is necessary to sufficiently resolve the formation and development of the near-wall vortices in the jet impingement region. At high nozzle-plate distance, the essence is to capture the evolution and breakup of the flow unsteadiness in the shear layer of the jet, so that accurate mean and fluctuating velocity profiles are obtained in the impingement region. Although the models have a quite different theoretical justification and generate a quite different eddy viscosity in some flow regions, their overall results are very comparable. The reason is that in zones that are crucial for the results, the models behave similarly.  相似文献   

12.
The two dimensional impinging circular twin-jet flow with no-cross flow is studied numerically and experimentally. The theoretical predications are carried out through numerical procedure based on finite volume method to solve the governing mass, momentum, turbulent kinetic energy and turbulent kinetic energy dissipation rate. The parameters studied were jet Reynolds number (9.5 × 104  Re  22.4 × 104), nozzle to plate spacing (3  h/d  12), nozzle to nozzle centerline spacing (l/d = 3, 5 and 8) and jet angle (0°  θ  20°). It is concluded that the stagnation primary point moves away in the radial main flow direction by increasing the jet angle. This shift becomes stronger by increasing the nozzle to nozzle centerline spacing (l/d). A secondary stagnation point is set up between two jets. The value of pressure at this point decreases by decreasing Reynolds number and/or increasing the jet angle.

The sub atmospheric region occurs on the impingement plate. It increases strongly by increasing Reynolds number and decreases as the jet angle and/or a nozzle to plate spacing increases. The spreading of jet decreases by increasing nozzle to plate spacing. The intensity of re-circulation zone between two jets decreases by increasing of h/d and jet angle. The increase of turbulence kinetic energy occurs within high gradient velocity.  相似文献   


13.
The flow structure generated by circular and oblate shaped nozzles for an impinging confined 7-by-7 jet array is investigated. Instantaneous velocity fields, obtained from Digital Particle Image Velocimetry (DPIV) along the crossflow direction are analyzed using Proper Orthogonal Decomposition (POD). Also, a vortex detection algorithm is used to locate and quantify the nature of the instantaneous vortices within the flow. The results show that an oblate shaped nozzle when oriented with its major axis aligned with the exhaust flow has flow characteristics resulting in increased turbulent kinetic energy. This has potential for increased surface transport.  相似文献   

14.
The paper concentrates on increasing convective heat transfer due to periodically pulsating impinging air jets. A maximum enhancement rate of cooling effectiveness up to 20% could be detected at an excitation Strouhal number of Sr = 0.82 when using a high pulsation magnitude. Reductions up to 5% occured at low Strouhal numbers with coincident high pulsation magnitudes as well. The thermal results were completed with phase-locked flow field investigations by means of PIV and surface visualizations using the oil film method.  相似文献   

15.
The qualities of a DES (Detached Eddy Simulation) and a PANS (Partially-Averaged Navier–Stokes) hybrid RANS/LES model, both based on the kω RANS turbulence model of Wilcox (2008, “Formulation of the kω turbulence model revisited” AIAA J., 46: 2823–2838), are analysed for simulation of plane impinging jets at a high nozzle-plate distance (H/B = 10, Re = 13,500; H is nozzle-plate distance, B is slot width; Reynolds number based on slot width and maximum velocity at nozzle exit) and a low nozzle-plate distance (H/B = 4, Re = 20,000). The mean velocity field, fluctuating velocity components, Reynolds stresses and skin friction at the impingement plate are compared with experimental data and LES (Large Eddy Simulation) results. The kω DES model is a double substitution type, following Davidson and Peng (2003, “Hybrid LES–RANS modelling: a one-equation SGS model combined with a kω model for predicting recirculating flows” Int. J. Numer. Meth. Fluids, 43: 1003–1018). This means that the turbulent length scale is replaced by the grid size in the destruction term of the k-equation and in the eddy viscosity formula. The kω PANS model is derived following Girimaji (2006, “Partially-Averaged Navier–Stokes model for turbulence: a Reynolds-Averaged Navier–Stokes to Direct Numerical Simulation bridging method” J. Appl. Mech., 73: 413–421). The turbulent length scale in the PANS model is constructed from the total turbulent kinetic energy and the sub-filter dissipation rate. Both hybrid models change between RANS (Reynolds-Averaged Navier–Stokes) and LES based on the cube root of the cell volume. The hybrid techniques, in contrast to RANS, are able to reproduce the turbulent flow dynamics in the shear layers of the impacting jet. The change from RANS to LES is much slower however for the PANS model than for the DES model on fine enough grids. This delays the break-up process of the vortices generated in the shear layers with as a consequence that the DES model produces better results than the PANS model.  相似文献   

16.
Low speed jets have important applications in chemical process, power and aerospace industries. Velocity fluctuations in low speed laminar jets have been investigated experimentally and theoretically, in the present work. The effects of buoyancy on the mean and fluctuating components of velocity have been highlighted. It is observed that even for forced convection dominated flow, convective instabilities and the resulting local velocity fluctuations are significantly influenced by buoyancy. Both the dominant frequency and the amplitude of velocity fluctuations depend on the jet exit temperature and spatial location within the jet. For isothermal jets, the dominant frequency of oscillation increases almost linearly with Reynolds number, while for buoyant jets nonlinearity exists at lower Reynolds numbers. Numerical simulations of the present study are found to be reasonably successful in predicting the oscillatory behavior of both isothermal and non-isothermal laminar free jets accurately.  相似文献   

17.
The heat transfer characteristics of a planar free water jet normally or obliquely impinging onto a flat substrate were investigated experimentally. The planar jet issued from a rectangular slot nozzle with a cross section of 1.62 mm × 40 mm. The mean velocity at the nozzle exit ranged from 1.5 to 6.1 m s−1. The corresponding Reynolds number range based on the nozzle gap and the mean velocity was 2200–8800. Constant heat-flux conditions were employed at the solid surface. Various impingement angles between the vertical planar jet and the inclined solid surface were investigated: 90° (normal collision), 70°, 60°, and 50°. In the case of normal collisions, the Nusselt number is high at the impingement line, and decreases with departures from it. The stagnation Nusselt numbers were compared to the predictions of several correlations proposed by other researchers. In oblique collisions, the profiles of the local Nusselt numbers are asymmetric. The locations of the peak Nusselt numbers do not coincide with the geometric center of the planar jet on the surface.  相似文献   

18.
Direct numerical simulations of the flow field of an element of banks of impinging axial and radial slot jets for different Reynolds number are presented. Simulations have been obtained from the solution of the Navier–Stokes equations. Results show for the chosen geometry a transition from steady to periodic to chaotic flow with increasing Reynolds number. The transition Reynolds number is nearly 50% smaller for the radial jet than for the axial jet. Period doubling has been observed for both cases, but only the radial jet shows periodic windows of chaos. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
20.
In this paper, a new type of finned plate heat exchanger (FPHE) is presented to recover the waste heat from exhaust flue gases. A finned plate configuration causes low pressure drop and it is especially appropriate for heat transfer at the flue gas side. Meanwhile, this paper presents a detailed experimental and numerical study of convection heat transfer and pressure drop of the new structure. Three-dimensional numerical simulation results using the CFD code FLUENT6.3 were compared with experimental data to select the best model. The heat transfer and pressure drop with different geometry pattern was then studied numerically using the selected model. And the velocity field and temperature distribution of air flow in the finned plate channel are presented with different geometry patterns. These results provide insight into improved designs of FPHEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号