首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对材料界面超高速自相似动态分层的反平面问题进行了解析分析。分层模拟为界面裂纹由零长度自相似扩展,扩展速度为蹭音速或超音速。首先考虑运动集中载荷作用下界面动态分层的情况,利用界面裂纹自相似扩展的运动位错模型将问题归结为奇异积分方程,并求得解析解,分析了裂纹尖端的应力奇性,获得了动应力强度因子。最后,利用叠加原理给出了x^n型载荷作用下界面动态分层的解。  相似文献   

2.
When a crack appears in composite materials, the fibrous system will form bridges, and the crack propagates asymmetrically as a rule. A dynamic model of an asymmetrical crack propagation is considered and investigated by applying the self-similar functions. The formulation involves the development of a Riemann–Hilbert problem. The analytical solution of an asymmetrical propagation crack of composite materials under the action of variable moving loads and unit-step moving loads is obtained.  相似文献   

3.
By means of the theory of complex functions, fracture dynamics problems concerning mode I semi-infinite crack were studied. Analytical solutions of stress, displacement and dynamic stress intensity factor under the action of moving increasing loads Pt 3/x 3Px 3/t 2, respectively, are very easily obtained using the ways of self-similar functions. The correlative closed solutions are attained based on the Riemann–Hilbert problems.  相似文献   

4.
  Nian-chun  Cheng  Yun-hong  Wang  Yun-tao  Cheng  Jin 《Nonlinear dynamics》2011,63(4):793-806
By application of the approaches of the theory of complex functions, fracture dynamics problems of orthotropic solids under anti-plane shear loading were researched. Universal representation of analytical solutions was obtained by means of self-similar functions. The problems dealt with can be facilely transformed into Riemann–Hilbert problems by this technique, and analytical solutions of the stress, the displacement and dynamic stress intensity factor under the actions of moving increasing loads Px 2/t 2 and Pt 3/x 2 for the edges of asymmetrical mode III crack, respectively, were acquired. In the light of corresponding material properties, the variable rule of dynamic stress intensity factor was illustrated very well.  相似文献   

5.
By means of the theory of complex functions, fracture dynamics problems of mode I semi- infinite crack for anisotropic orthotropic body were researched. Analytical solutions of stress, displacement, and dynamic stress intensity factor under the action of moving increasing loads Px 3/t 3, Pt 4/x 3, respectively, are very easily obtained utilizing the approaches of self-similar functions. In the light of relevant material’s coefficients, the alterable rule of dynamic stress intensity factor was depicted very well. The correlative closed solutions are attained based on the Riemann–Hilbert problems. After those analytical solutions were applied by the superposition principle, the solutions of discretional complex problems could be attained.  相似文献   

6.
The J-integral analysis is presented for the interaction problem between a semi-infinite interface crack and subinterface matrix microcracks in dissimilar anisotropic materials. After deriving the fundamental solutions for an interface crack subjected to different loads and the fundamental solutions for an edge dislocation beneath the interface, the interaction problem is deduced to a system of singular integral equations with the aid of a superimposing technique. The integral equations are then solved numerically and a conservation law among three values of the J-integral is presented, which are induced from the interface crack tip, the microcracks and the remote field, respectively. The conservation law not only provides a necessary condition to confirm the numerical results derived, but also reveals that the microcrack shielding effect in such materials could be considered as a redistribution of the remote J-integral. It is this redistribution that does lead to the phenomenological shielding effect.  相似文献   

7.
When a crack propagates towards a weak interface, interface debonding may occur before the incident crack reaches the interface. This phenomenon refers to the “Cook–Gordon mechanism”. In this investigation, an equivalent dynamic Cook–Gordon mechanism is studied both experimentally and analytically. Two strength-based criteria incorporating dynamic fracture mechanics analysis are proposed to predict the initiation location of interface debonding ahead of a dynamic incident crack. As validation, a comparison is made between the analytical predictions and experimental measurements. Results show that the strength-based criteria can effectively predict the initiation of interface debonding. Meanwhile, effects of the stress intensity factor and the T stress of the incident crack, on the interfacial debonding initiation are investigated. It is concluded that high-stress intensity factors of the incident cracks will easily induce interfacial debonding initiation, and changing the T stress is an effective way to control interfacial debonding initiation. Furthermore, high-interfacial tensile strengths rather than shear strengths, tend to suppress interfacial debonding initiation induced by a mode-I incident crack.  相似文献   

8.
本文研究了界面裂纹尖端的动态应力场的奇异特性.引入尖端无摩擦接触的界面裂纹模型并采用具有运动边界的控制积分方程.证明了在动态界面裂纹尖端仅存在平方根奇异的应力场.数值结果表明接触区中的正应力确保持为压应力.为表现界面裂纹的动态特性,给出了应力强度因子和裂纹面接触区尺寸的数值结果.  相似文献   

9.
By the application of the theory of complex functions, asymmetrical dynamic propagation problems on modeⅢinterface crack are studied. The universal representations of analytical solutions are obtained by the approaches of self-similar function. The problems researched can be facilely transformed into Riemann-Hilbert problems and analytical solution to an asymmetrical propagation crack under the condition of point loads and unit-step loads, respectively, is acquired. After those solutions were used by superposition theorem, the solutions of arbitrarily complex problems could be attained.  相似文献   

10.
The phenomenon of interfacial fracture, as manifested by atomistic cleavage, debonding and dislocation emission provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomistic-continuum simulation[1] of interfacial fracture, we focus here on the atomistic behavior within a nanoscopic core surrounding the crack tip. The inter-atomic potential under Embedded Atom Method is recapitulated to form an essential framework of atomistic simulation. The calculations are performed for a side-cracked disc configuration under a remoteK field loading. It is revealed that a critical loading rate defines the brittle-to-ductile transition of homogeneous materials. We further observe that the near tip mode mixity dictates the nanoscopic profile near an interfacial crack tip. A zigzag interface structure is simulated which plays a significant role in the dislocation emission from an interfacial crack tip, as will be explored in the second part of this investigation. The project supported by the National Natural Science Foundation of China  相似文献   

11.
Some closed-form equations for the coupling problem of buckling and growth of circular delamination are derived by recourse to the moving boundary variational principle. The axisymmetric buckling of a circular delamination subjected to an equal bi-axial compression is analysed by using high-order perturbation expansion. The axisymmetric buckled delamination has the following properties : under a certain residual pressure, there exist two characteristic radii, namely the critical radius Rc and growing radius Rg; for a certain interface toughness, the blister has three configuration of stationary, stable growth and unstable growth with increasing the loads. Under a higher edge thrust, the nonaxisymmetric secondary buckling will occur on the base of axisymmetric buckling and then the toughness and the driving force of the interface crack will be different along the delamination front. So the growth of circular delamination will not be self-similar. Without any assumption regarding the delamination front, the configurations of the blister with several nonaxisymmetric buckling modes n = 2, 3, 6, 8 are simulated. The nonaxisymmetric growth process for the nonaxisymmetric buckling mode n = 2 is simulated also under a sequence of loads.  相似文献   

12.
This paper investigates the dynamic behavior of a buried rigid ellipticcylinder partially debonded from surrounding matrix under the action of anti-planeshear waves (SH waves). The debonding region is modeled as an elliptic arc-shapedinterface crack with non-contacting faces. By using the wave function (Mathieufunction) expansion method and introducing the dislocation density function as anunknown variable, the problem is reduced to a singular integral equation which issolved numerically to calculate the near and far fields of the problem. The resonanceof the structure and the effects of various parameters on the resonance are discussed.  相似文献   

13.
本文利用波函数展开法和奇异积分方程技术研究了SH型反平面剪切波作用下埋藏刚性椭圆柱与周围介质部分脱胶时的动力特性.将脱胶区看作表面不相接触的椭圆弧形界面裂纹,利用波函数(Mathieu函数)展开法,并引人裂纹面的位错密度函数为未知量,将问题归结为奇异积分方程,通过数值求解积分方程获得了远场和近场物理参量,并讨论了共振特性和各参数对共振的影响.  相似文献   

14.
With the theory of complex functions, dynamic propagation problems concerning surfaces of asymmetrical mode Ⅲ crack subjected to moving loads are investigated. General representations of analytical solutions are obtained with self-similar functions. The problems can be easily converted into Riemann-Hilbert problems using this technique. Analytical solutions to stress, displacement and dynamic stress intensity factor under constant and unit-step moving loads on the surfaces of asymmetrical extension crack, respectively, are obtained. By applying these solutions, together with the superposition principle, solutions of discretionarily intricate problems can be found.  相似文献   

15.
An analysis is performed for the problem of a finite Griffith crack moving with constant velocity along the interface of a two-layered strip composed of a piezoelectric ceramic and an elastic layers. The combined out-of-plane mechanical and in-plane electrical loads are applied to the strip. Fourier transforms are used to reduce the problem to a pair of dual integral equations, which is then expressed in terms of a Fredholm integral equation of the second kind. The dynamic stress intensity factor(DSIF) is determined, and numerical results show that DSIF depends on the crack length, the ratio of stiffness and thickness, and the magnitude and direction of electrical loads as well as the crack speed. In case that the crack moves along the interface of piezoelectric and elastic half planes, DSIF is independent of the crack speed.  相似文献   

16.
本文求解了弹性P波对界面部分脱胶的可动刚性圆柱夹杂物的散射问题。将脱胶区看作表面不相接触的弧形界面裂纹,借助波函数展开法并利用边界条件将问题转化为一组对偶级数方程。然后通过引入裂纹面的位错密度函数,将其化为一组具有Hilbert核的第二类奇异积分方程,并进一步化为Cauchy型奇异积分方程组,数值求解方程组可获得动应力强度因子,夹杂物刚体振动位移和散射截面等重要参量。结果显示该类结构在较低的频率上发生共振,此低频共振特性与脱胶区大小,入射波方向、材料组合等多种参数有关。与已有方法相比,本文的方法更具一般性,适用于任意材料组合。  相似文献   

17.
A dynamic model of bridging fiber pull-out of composite materials   总被引:3,自引:0,他引:3  
An elastic analysis of an internal central crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane is carried out. In this paper a dynamic model of bridging fiber pull-out is presented for analyzing the distributions stress and displacement of composite materials with the internal central crack under the loading conditions of an applied non-uniform stress and the traction forces on crack faces yielded by the fiber pull-out model. Thus the fiber failure is determined by maximum tensile stress, the fiber breaks and hence the crack propagation should occur in self-similar fashion. By reducing the dynamic model to the Keldysh–Sedov mixed boundary value problem, a straightforward and easy analytical solution can be attained. When the crack extends, its fibers continue to break. Analytical study on the crack extension under the action of an inhomogeneous point force Px/t, Pt is obtained for orthotropic anisotropic body, respectively; and it can be utilized to attain the concrete solutions of the model by the ways of superposition.  相似文献   

18.
Summary A boundary value problem for two semi-infinite anisotropic spaces with mixed boundary conditions at the interface is considered. Assuming that the displacements are independent of the coordinate x 3, stresses and derivatives of displacement jumps are expressed via a sectionally holomorphic vector function. By means of these relations the problem for an interface crack with an artificial contact zone in an orthotropic bimaterial is reduced to a combined Dirichlet-Riemann problem which is solved analytically. As a particular case of this solution, the contact zone model (in Comninou's sense) is derived. A simple transcendental equation and an asymptotic formula for the determination of the real contact zone length are obtained. The classical interface crack model with oscillating singularities at the crack tips is derived from the obtained solution as well. Analytical relations between fracture mechanical parameters of different models are found, and recommendations concerning their implementation are given. The dependencies of the contact zone lengths on material properties and external load coefficients are illustrated in graphical form. The practical applicability of the obtained results is demonstrated by means of a FEM analysis of a finite-sized orthotropic bimaterial with an interface crack. Received 19 October 1998; accepted for publication 13 November 1998  相似文献   

19.
A high order of asymptotic solution of the singular fields near the tip of a mode III interface crack for pure power-law hardening bimaterials is obtained by using the hodograph transformation. It is found that the zero order of the asymptotic solution corresponds to the assumption of a rigid substrate at the interface, and the first order of it is deduced in order to satisfy completely two continuity conditions of the stress and displacement across the interface in the asymptotic sense. The singularities of stress and strain of the zeroth order asymptotic solutions are −1/(n 1+1) and −n/(n 1+1) respectively. (n=n 1,n 2 is the hardening exponent of the bimaterials.) The applicability conditions of the asymptotic solutions are determined for both zeroth and first orders. It is proved that the Guo-Keer solution[10] is limited in some conditions. The angular functions of the singular fields for this interface crack problem are first expressed by closed form. The project supported by National Natural Science Foundation of China  相似文献   

20.
With the theory of complex functions, dynamic propagation problems concerning surfaces of asymmetrical mode III crack subjected to moving loads are investigated. General representations of analytical solutions are obtained with self-similar functions. The problems can be easily converted into Riemann-Hilbert problems using this technique. Analytical solutions to stress, displacement and dynamic stress intensity factor under constant and unit-step moving loads on the surfaces of asymmetrical extension crack, respectively, are obtained. By applying these solutions, together with the superposition principle, solutions of discretionarily intricate problems can be found. Project supported by the Post-Doctoral Science Foundation of China (No. 2005038199) and the Natural Science Foundation of Heilongjiang Province of China (No. ZJG04-08)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号