首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Liquid crystals》2012,39(15):2181-2189
ABSTRACT

Significant attention has been paid to improve the helical twisting power (β) and Δβ between the two different isomers of axially chiral azobenzene dopants in cholesteric liquid crystals (CLCs); however, the correlations between the vales (β and Δβ) with the molecular structures as well as photoisomerisation kinetics are far from clear. In this study, a series of binaphthyl-azobenzene cyclic dopants R1R3 with different lengths of alkoxy chain was synthesised, which exhibited photochemically reversible transcis isomerisation in both organic solvents and liquid crystal hosts. When doping into a nematic liquid crystal, dopant R2 with one linking alkoxy group showed the highest values of β and Δβ. The results revealed that the β value was related to the dihedral angle between two naphthyl planes and the miscibility between the dopants and the host molecule. Moreover, Δβ was also depended on the photoisomerisation quantum yields. With increasing length of alkoxyl chain, the photoisomerisation rate constant of dopants increased upon ultraviolet irradiation and decreased for the reverse process upon visible light irradiation either in isotropic acetonitrile or in CLCs. These results enable the precise tuning of the pitch and selective reflection wavelength of CLCs.  相似文献   

2.
3.
In some liquid crystal (LC) mixtures of bent-core host molecules that form helical nanofilaments (HNFs) and chiral, rod-shaped molecular guests, the spontaneous chirality of the HNFs is not influenced by the guest handedness. In other mixtures, the filaments become homochiral, responding to the handedness of the guest. We show that the important distinction between these two behaviours is the solubility of the guest material in the HNF phase. In our experiments, chiral LC mesogens doped into the HNF phase result in an enantiomeric imbalance and sometimes change the phase sequence on cooling from the isotropic melt.  相似文献   

4.
Five photochromic chiral azobenzene compounds and one nonphotochromic chiral compound were synthesized and characterized by IR, 1H NMR spectroscopy, and elemental analysis. Cholesteric liquid crystalline phases were induced by mixing of the nonphotochromic chiral compound and one of the photochromic chiral azobenzene compounds in a host nematic liquid crystal (E44). The helical pitch of the induced cholesteric phase was determined by Cano's wedge method and the helical twisting power (HTP) of each sample was thus determined. The helical twisting powers of azobenzene compounds were decreased upon UV irradiation, due to trans-->cis photoisomerization of azobenzene molecules. Among the azobenzene compounds synthesized in our study, Azo-5, with isomannide (radical) as chiral photochromic dopant, showed the highest HTP and contrast ratio (Tmax/Tmin). Photoswitching between compensated nematic phase and cholesteric phase was achieved through reversible trans<-->cis photoisomerization of the chiral azobenzene molecules through irradiation with UV and visible light, respectively. Transmission rates (contrast ratios) increased with decreasing helical pitch length in the induced cholesteric phase. The influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds is discussed in detail.  相似文献   

5.
By virtue of its spontaneous polarization (PS), a ferroelectric SmC* liquid crystal can be switched between two states corresponding to opposite molecular tilt orientations using an electric field, thus producing an ON-OFF light shutter between crossed polarizers. Considerable efforts have been made over the past decade to develop photonic FLC light shutters because of their potential uses in dynamic holography and optical data storage. The ON-OFF switching of a FLC light shutter can be triggered by light via a photoinversion of PS using a photochromic dopant. The spontaneous polarization is a chiral bulk property that can be left-handed (negative) or right-handed (positive), depending on the absolute configuration of the chiral component of the SmC* phase. In the approach described herein, the magnitude of PS is modulated via the photoisomerization of a chiral thioindigo dopant that undergoes a large increase in transverse dipole moment upon trans-cis photoisomerization. The sign of PS is photoinverted using an "ambidextrous" thioindigo dopant containing a chiral 2-octyloxy side chain that is coupled to the thioindigo core and induces a positive PS, and a chiral 2,3-difluorooctyloxy side chain that is decoupled from the core and induces a negative PS. In the trans form, the 2,3-difluorooctyloxy side chain predominates and the net PS induced by the dopant is negative. However, upon trans-cis-photoisomerization, the increase in transverse dipole moment of the 2-octyloxy/thioindigo unit raises its induced PS over that of the decoupled 2,3-difluorooctyloxy side chain, and thus inverts the net sign of PS induced by the dopant from negative to positive.  相似文献   

6.
This article describes a brief review of recent research advances in chiral liquid crystals (CLCs) for laser applications. The CLC molecules have an intrinsic capability to spontaneously organize supramolecular helical assemblages consisting of liquid crystalline layers through their helical twisting power. Such CLC supramolecular helical structures can be regarded as one‐dimensional photonic crystals (PhCs). Owing to their supramolecular helical structures, the CLCs show negative birefringence along the helical axis. Selective reflection of circularly polarized light is the most unique and important optical property in order to generate internal distributed feedback effect for optically‐excited laser emission. When a fluorescent dye is embedded in the CLC medium, optical excitation gives rise to stimulated laser emission peak(s) at the band edge(s) and/or within the CLC selective reflection. Furthermore, the optically‐excited laser emission peaks can be controlled by external stimuli through the self‐organization of CLC molecules. This review introduces the research background of CLCs carried out on the PhC realm, and highlights intriguing precedents of various CLC materials for laser applications. It would be greatly advantageous to fabricate active CLC laser devices by controlling the supramolecular helical structures. Taking account of the peculiar features, we can envisage that a wide variety of supramolecular helical structures of CLC materials will play leading roles in next‐generation optoelectronic molecular devices. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.201000013  相似文献   

7.
New chiral derivatives of thiophene fused with menthane, camphor or the 3R-3-methylcyclohexane ring were prepared and studied as chiral dopants in cholesteric liquid crystalline mixtures. The helical twisting power of the most effective compounds of this series, menthothiophenes, was strong enough to obtain selective reflection of visible light at 16 wt% concentration of the dopant in a non-chiral nematic host.  相似文献   

8.
Based on the stabilisation of the molecular motion by the chiral residue, novel optically active biphenylic chiral dopants for nematic liquid crystals were developed. This molecular congestion was obtained by introducing mesogenic residues on the 2,2'-positions of the chiral biphenyl; this led to a novel molecular architecture that was found to be efficient. The synthesised optically active biphenyls were characterised with very short cholesteric pitches when used as chiral dopants in nematic liquid crystals. The synthesis of the enatiomerically pure biphenyl dopants and their preliminary physicochemical characterisations are described.  相似文献   

9.
ABSTRACT

The splay, twist and bend elastic constants (K11, K22 and K33) have been measured as a function of temperature in bent-core/calamitic mixtures based on three different calamitic materials (5CB, 8CB and ZLI1132) and two bent-core dopants. The behaviour of the splay and bend constants are as expected; a reduction in K33 of ~20%, in line with predictions from mixing rules and other observations. Interestingly, no change is seen in the splay constant, K11 of the calamitic hosts. Surprisingly though, the twist elastic constant exhibits a reduction of 30 – 40% in all mixtures across the nematic range, an effect not previously reported and much larger than mixing rules can explain. The elastic behaviour is universal in our mixtures. We explain part of the reduction in the twist deformation by considering the influence of the chiral conformer fluctuations of the bent-core molecules on the twist elastic constants of the mixtures. However, the dramatic reduction can only be fully explained by also including contributions from chiral conformer fluctuations of the calamitic host, a form of chiral amplification.  相似文献   

10.
Polymerization of crosslinkable liquid crystal monomers in chiral liquid crystalline media stabilizes the phase and enables distinct electro‐optic properties relative to small‐molecule analogs. Particularly interesting are cases where the polymerization forms a crosslinked polymer network that maintains a “structural” chirality. Recent reports have employed this methodology to realize a diverse set of electro‐optic responses in polymer stabilized cholesteric liquid crystals (PSCLCs) including reflection bandwidth broadening, reflection wavelength tuning, and dynamic scattering modes. It has been proposed that the mechanism at the root of these electro‐optic responses is an ion‐mediated, electromechanical deformation of the stabilizing and structurally chiral polymer network. In an effort to better understand the nature of these deformations, here we have characterized the electro‐optic response of PSCLCs with different polymer concentrations and crosslink densities. The dynamic response of PSCLCs to electric fields exhibits a time‐dependent behavior reminiscent of the creep of polymeric materials to mechanical deformations. The electro‐optic response can be described as the superposition of two contributions: the fast deformation of a relatively soft component of the polymer network (1–2 s) and the slower (10–20 s) deformation of a harder component. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1087–1093  相似文献   

11.
12.
Rodlike gold(I) complexes, [Au(C6F4OCmH2m+1)(C(triple bond)NC6H4C6H4OCnH2n+1)] (m=2, n=4, 10; m=6, n=10; m=10, n=6, 10), display interesting features. They are liquid crystals and show photoluminescence in the mesophase, as well as in the solid state and in solution. The single-crystal, X-ray diffraction structure of [Au(C6F4OC2H5)(C(triple bond)NC6H4C6H4OC4H9)] confirms its rodlike structure, with a linear coordination around the gold atom, and reveals the absence of any Au...Au interactions (such interactions are often present in luminescent gold complexes). Well-defined, intermolecular Fortho...Fmeta interactions, with remarkably short intermolecular FF distances (2.66 A), are observed; these interactions seem to be responsible for the crystal packing, which consists of an antiparallel arrangement of molecules. Experiments under different conditions support the explanation that the photoluminescence has an intramolecular origin.  相似文献   

13.
Mohamed Alaasar 《Liquid crystals》2016,43(13-15):2208-2243
ABSTRACT

Azo-functionalised materials are of special interest due to their photochromic nature, i.e. reversible trans–cis isomerisation upon photoirradiation. The combination of photosensitivity and liquid crystalline properties in the same molecule allows the material to be exploited for optical and optoelectronic devices. Azobenzene-based bent-core liquid crystals (BCLCs) have attracted considerable attention in recent years due to their rich mesomorphism. In this review, the main research directions and different molecular structures of bent-core molecules incorporating azobenzene unit and its subtype the so-called hockey-stick molecules are summarised. Additionally, azobenzene-based U-shaped molecules, hydrogen-bonded bent-shaped liquid crystalline materials and some selected examples of two different types of photoswitchable mesogenic dimers are provided. The nature, number and position of the lateral substitutions able to modify the phase behaviour of such BCLCs, affording in turn interesting liquid crystalline phases are discussed. Finally, the isomerisation process of these photosensitive BCLCs in solutions or in mesophases under the effect of UV–visible irradiation is summarised.  相似文献   

14.
Stereoregular cis‐transoidal poly(phenylacetylene) bearing a phosphonic acid monoethyl ester as the pendant group (poly‐ 1 ‐H) was found to form a preferred‐handed helix upon complexation with various optically active pyrrolidines and piperazines in dilute dimethyl sulfoxide and water, and the complexes exhibited characteristic induced circular dichroisms (ICDs) in the UV‐vis region of the polymer backbone. The Cotton effect signs in water reflect the absolute configuration of the pyrrolidines. The sodium salt of poly‐ 1 ‐H (poly‐ 1 ‐Na) and poly‐ 1 ‐H in the presence of optically active amines formed lyotropic nematic and cholesteric liquid crystalline phases in concentrated water solutions, respectively, indicating the rigid‐rod characteristic of the polymer main chain regardless of the lack of a single‐handed helix, as evidenced by the long persistence length of about 18 nm before and after the preferred‐handed helicity induction in the polymer. X‐ray diffraction of the oriented films of the nematic and cholesteric liquid crystalline polymers exhibited almost the same diffraction pattern, suggesting that both polymers have the same helical structure; dynamically racemic and one‐handed helices, respectively. On the basis of the X‐ray analysis, a possible helical structure of poly‐ 1 is proposed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1383–1390, 2010  相似文献   

15.
16.
In this study,right-handed dicinnamate isosorbide was synthesized via the esterification reaction between optically active isosorbide and cinnamate.The chiral dopant was characterized by FT-IR,~1H NMR,elemental analysis,SEM,UV absorption spectrum.After dissolving in a nematic liquid crystal mixture,the chiral dopant exhibited a temperature-dependent solubility in the chiral nematic liquid crystal mixture.Meanwhile,a relatively high value of helical twisting power of the polymerizable chiral dopant was de...  相似文献   

17.
Either as the free alcohol or deprotonated, a carbinol residue bearing gemial, identical aryl residues can at first sight be recognized as an achiral structural unit. When incorporated, however, into a chiral molecule, the two aryl groups become diastereotopic. Thus, they might contribute to an enhancement in stereoselectivity and do so in a variety of reactions. This Minireview highlights developments in stereochemistry when the diaryl(oxy)methyl group is involved, with emphasis given to the beneficial effect of this moiety. Of particular focus are auxiliaries, the stoichiometric use of metal complexes, metal and organocatalysts, and finally chiral dopants for liquid crystals, all featuring the diaryl(oxy)methyl group.  相似文献   

18.
This paper describes the discontinuous change in the helical pitch of a cholesteric liquid crystal (ChLC) by means of the photoisomerization of chiral azobenzene molecules under homogenous alignment conditions. A mixture of E44, R811 and Azo was prepared in the ratio 68/28/4, respectively. R811 and Azo have opposite twisting abilities such that they induce right- and left-handed helices, respectively when added to E44. The mixture was injected into a glass cell having a 2 or 5?µm cell gap, and treated for homogeneous molecular orientation. The wavelength of selective reflection from the ChLC was shifted to shorter wavelengths by the trans-cis photoisomerization of Azo. The change in the helical pitch was not only discontinuous, but also dependent on the cell thickness. The discontinuous change in the helical pitch was estimated to be almost the same as the half turn of the helical pitch in each cell gap, and was dependent on the number of helical half pitches in the glass cell. The homogeneous alignment condition affects the photochemical change in the helical structure of the ChLC system.  相似文献   

19.
《Liquid crystals》2012,39(12):1769-1779
ABSTRACT

Four chiral dopants exhibiting smectic LC phases themselves were prepared and their helical twisting power (HTP) and thermal phase behaviour in mixtures with four various LC hosts were studied. The influence of host liquid crystal on HTP was evaluated and generally higher values were found for hosts with high birefringence. Unexpectedly, high enhancement was found for an LC-chiral dopant pair, both having a similar aromatic core – biphenyl ring substituted with polar group. All studied chiral dopants exhibited limited compatibility with the LC hosts in twisted nematic phase at room temperature. For one of the studied mixtures, it was able to obtain single twisted nematic phase with selective light reflection band with maximum at wavelength about 1.0 µm. Carboxylic acid-type dopants exhibited total compatibility with the studied host in single twisted nematic phase at elevated temperatures, allowing preparation of mixtures with reflection band in the visible range. In case of the carboxylic acid dopants, blue phases for optimised compositions were observed. Intermolecular hydrogen bonding between carboxylic acid proton and pyridine nitrogen of chiral dopants was found. Doping the LC host with these dopants led to slight enhancement of HTP value and higher solubility in the LC host.  相似文献   

20.
The nematic liquid crystals (LCs) are randomly dispersed material with random orientation order in polymer dispersed liquid crystal (PDLC) films. The LCs change their orientation from random to vertical as electric field is applied. This transformation of orientation order of nematic liquid crystals in the PDLC films is controlled by many factors operating simultaneously. For instance, some factors like the internal forces of attractions among the neighboring LC molecules, anchoring with polymeric matrix, ITO glass boundaries, and chemical structures of the materials are less studied. The learning of extent of vertical orientation of liquid crystal droplets in an electric field is essential to attain optimum electro optical properties of PDLCs. In this finding, bipolar and radial LCs droplets with random orientation have been observed in non-acrylic polymeric media. It is learned that with small increase of contents of external material, the extent of vertical orientation has been varied intensely. The extent of vertical orientation of LCs molecules increases as the contents of external non-acrylic polymeric material decreased. For this study, the orientations of LCs with respect to material type/contents, external applied force, and restoration of electric filed as hysteresis have been studied in details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号