首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Chitosan hydrogel beads were successfully prepared by the method of thermosensitive internal gelation technique. The prepared beads were spherical, smooth-surfaced and non-aggregated with a diameter of 1.7–2.1 mm. The diameters of beads can be controlled and have a correlation with the initial drop size, the concentration of CaCl2, alginate and the time of solidification. The bead is comprised of three parts, which are chitosan/glycerophosphate (CS/GP) hydrogel core, chitosan-alginate (CS/SA) gel layer in the middle and calcium-alginate gelatin capsules in outer layer. Swelling studies indicate that the beads can be stable in simulated gastric fluid. But the beads shrink sharply when removed to simulated intestinal fluid. Drug release behavior showed that release of ornidazole in the beads is much slower than in the CS/GP hydrogel.  相似文献   

2.
Electrostatic extrusion was applied to the encapsulation of 3-ethoxy-4-hydroxybenzaldehyde (ethyl vanillin) in calcium alginate and calcium alginate/poly(vinyl alcohol) beads. The calcium alginate/poly(vinyl alcohol) hydrogel spheres were formed after contact with the cross-linker solution of calcium chloride, followed by the freeze-thaw method for poly(vinyl alcohol) gel formation. The entrapment of aroma in beads was investigated by FTIR and thermal analysis (thermogravimetry/differential thermal gravimetry; TGA/DTG). The mass loss in the temperature range of 150?C300°C is related to degradation of the matrix and the release of ethyl vanillin. According to the DTG curve, the release of ethyl vanillin occurs at about 260°C. TGA measurements of the stored samples confirmed that formulations were stable for a period of one month. FTIR analysis provides no evidence for chemical interactions between flavour and alginate that would alter the nature of the functional groups in the flavour compound.  相似文献   

3.
A solution of 10 g/L of sodium alginate (Satialgine® types used [Sanofi trademark]: SG800® and S1100® with manuronic/guluronic ratio of 0.5 and 1.2, respectively) containing invertase (0.08 g of protein/L) was dropped into 0.1 M CaCl2 solution buffered at pH 4.0, 7.0, or 8.0. The beads were left to harden in CaCl2 solution for 24 h. The high immobilization yield of 60% occurred with SG800 at pH8.0. The activity of soluble and insoluble invertase was measured against pH (2.8–8.0), sucrose concentration (4.5–45 mM), and temperature (30–60°C). Both forms presented an optimum pH of 4.6. However, the soluble invertase was stable at the overall pH interval studied, whereas insoluble invertase lost 30% of its original activity at pH > 5.0. At temperatures above 40°C, the insoluble form was more stable than the soluble one. The kinetic constants and activation energies (E a ) for free invertase were K M =41.2 mM, V max=0.10 mg of TRS/(min · mL), and E a 28 kJ/mol for entrapped invertase they were (K M ) ap =7.2 mM, (V max) ap =0.060 mg of TRS/(min · mL), and (E a )ap=24 kJ/mol.  相似文献   

4.
Calcium-induced alginate gel bead (Alg-Ca) coated with an alginate hydrolysate (Alg), e.g. the guluronic acid block (GB) was prepared and the model drug, hydrocortisone release profiles were investigated under simulated gastrointestinal conditions. Their molecular weights were one sixth or one tenth that of Alg and the diffraction patterns of the hydrolysates resembled that of Alg. The drug release rate from Alg-Ca coated with GB apparently lowered than that of Alg-Ca (coating-free) in the gastric juice (pH1.2). And the coating did not resist the disintegration of Alg-Ca in the intestinal juice (pH 6.8) and the gel erosion accelerated the drug release. On the other hand, for the coated Alg-Ca containing chitosan, the drug release showed zero-order kinetics without rapid erosion of Alg-Ca. The drug release rate from Alg-Ca was able to be controlled by the coating and modifying the composition of the gel matrix.  相似文献   

5.
In recent years, heavy metal uptake by biopolymer gels, such as Cal-alginate or chitosan, has been studied by various methods. This is of interest because such materials might be an alternative to synthetical ion-exchange resins in the treatment of industrial waste waters. Most of the work done in this field consisted of studies of equilibirum absorption of different heavy metal ions with dependence on various experimental parameters. In some publications, the kinetics of absorption were studied, too. However, no experiments on the spatial distribution of heavy metals during the absorption process are known to us. Using Cu as an example, it is demonstrated in this article that NMR microscopy is an appropriate tool for such studies. By the method presented here, it is possible to monitor the spatial distribution of heavy metal ions with a time resolution of about 5 min and a spatial resolution of 100 μm or even better.  相似文献   

6.
Polysaccharide-based composite materials (beads) containing silver nanoparticles (AgNPs) were successfully prepared. Hydrogel beads acted as an efficient vehicle for Ag+ delivery. Beads promoted the AgNPs protection and inhibited their aggregation. Antimicrobial assays showed that the beads/AgNPs concentration can be modulated to deliver an amount of Ag+ necessary for kill Escherichia coli cells.  相似文献   

7.
Alginate beads containing entrapped DNA were produced using both external and internal calcium sources, and coated with chitosan or poly-l-lysine membranes. The beads were assayed with DNase nuclease to determine formulation conditions offering the highest level of DNA protection fromnucleic acid hydrolysis, simulating gastrointestinal exposure. A method was developed to extract and assay intracapsular DNA through a modified agarose electrophoresis system. Both external and internally gelled beads were permeable to DNase (Mw=31 kDa), indicated by the absence of DNA after nuclease exposure. At low levels of DNase exposure, coated high guluronic content alginate beads offered a higher level of DNA protection compared with coated beads with low guluronic alginate. No apparent correlation was found with chitosan membrane molecular weight and degree of deacetylation; however, increasing poly-l-lysine molecular weight appeared to increase DNase exclusion from beads. At elevated levels of DNase exposure, DNA hydrolysis was evident within all coated beads with the exception of those coated with the highest molecular weight poly-l-lysine (Mw=197.1 kDa), which provided almost total nuclease protection. Optimal combination then for DNA protection from nucleases is a high guluronic alginate core, coated with high molecular weight poly-l-lysine.  相似文献   

8.
Calcium alginate beads were investigated for their biosorption performance in the removal of gold and silver from aqueous solutions. It was found that uptake capacities were significantly affected by the solution pH, with optimum pH values of 2 and 4 for gold and silver, respectively. Kinetic and isotherm experiments were carried out at the optimum pH. The maximum uptake capacities were 290 mg/g for Au and 52 mg/g for Ag. FTIR analysis indicated that both carboxylic and hydroxylic functional groups in alginate beads are involved in the metal binding and later reduction of gold (+3) and silver (+1) to gold (0) and silver (0). SEM and X-ray diffraction confirmed the formation of gold and silver nanoparticles.  相似文献   

9.
Azo-dyes, molecules characterised by the presence of the azo-group (–NN–), are widely used in textile, leather, rubber, plastic, and food industries. Water-soluble azo-dyes are greatly resistant to biodegradation, and are characterised by a high thermal and photo stability due to their complex structures. The release of these molecules into the environment is of crucial concern due to their toxic, mutagenic and carcinogenic characteristics. Biosorption has been demonstrated an effective method to remove pollutants from wastewaters thus solving ecological tasks, being a low cost process and the sorbent biodegradable. The main requirements of an efficient sorbent are thermal, chemical and mechanical stability, and rapid sorption.In this work, the ability of both row cork and the same sorbent entrapped in a biopolymeric gel of calcium alginate, on the removal of chrysoidine from aqueous solutions was examined.The influence on the sorption of pH, initial dye concentration, and particle size, as well as the efficiency of the entrapment, have been investigated. The maximum sorption was found for cork samples of fine particle size (FC), in both row and entrapped forms, at pH 7; conversely, at pH 4 the difference is significant (0.12 mmol/g for row cork and 0.20 mmol/g for entrapped cork), evoking a cooperation of alginate in binding the positively charged chrysoidine molecule.  相似文献   

10.
11.
Chitosan beads (CB) as such have very low defluoridation capacity (DC) of 52 mgF/kg have been suitably modified by carboxylation followed by chelation with Fe3+ ion (Fe-CCB), in order to effectively utilize both hydroxyl and amine groups for defluoridation. The modified beads showed enhanced DC to a very significant level of 4230 mgF/kg. The fluoride removal process is governed by both adsorption and complexation mechanism. The sorbent was characterized using Fourier transform infrared spectrometer (FTIR) and scanning electron microscope (SEM) analysis. The experimental data have been analysed using isotherm and kinetic models. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to predict the nature of sorption. A field trial was carried out with fluoride water collected from a nearby fluoride-endemic village.  相似文献   

12.
Summary Studies on adsorption behavior of heavy radionuclides, present altogether in no-carrier-added state, e.g., 197-200Pb, 197-200Tl and 197Hg, have been carried out with calcium alginate beads. High lead (100%) and moderate thallium removal (~65%) was achieved in pH range 2-7. 100% mercury removal was also achieved at pH 2 and 4. Effort has been made to recover all three radionuclides adsorbed in the calcium alginate beads using various chemicals, such as HCl, thiourea, sodium acetate, sodium oxalate and sodium nitrite. It was found that 0.1M HCl and 0.1M thiourea could remove at pH 1 80-90% of adsorbed Pb. Tl recovery was possible by all chemicals mentioned above. Hg was also recovered by all chemicals except HCl.  相似文献   

13.
Pullulanase from Bacillus acidopullulyticus was purified on a packed bed and a fluidized bed of calcium alginate beads. The binding of enzyme activity to the medium was found to follow Langmuir isotherm pattern. The maximum binding capacity was 1476 U ml−1 matrix and the dissociation constant was 142 U ml−1. The dynamic binding capacities at 5% breakthrough in the packed and fluidized beds were 472 U ml−1 and 644 U ml−1, respectively. In the packed bed as well as the fluidized bed, an activity recovery of more than 95% with fold purification in the range of 46–59 was observed. The elution with a competitive inhibitor, viz. maltose, and high-fold purification indicate an affinity-based process. The purification process worked equally well with columns of bed volumes of 3.8 and 10 ml.  相似文献   

14.
Radiation-induced grafting of acrylic acid onto alginate/chitosan beads was performed in solution at a dose rate of 20.6 Gy/min of Co-60 gamma rays. The effect of absorbed dose on grafting yield was investigated. The characterization of the grafted and un-grafted beads was performed by FTIR spectroscopy and the swelling measurements at different pHs was studied. It is found that as the pH value increases the swelling degree increases up to pH 6 but with further increase in pH value the swelling decreases. Also, it is noticed that the grafting yield increased with increase the irradiation dose. Both un-grafted and grafted alginate/chitosan beads were examined as sorbents for the removal of Pb ions from aqueous solutions. The sorption behavior of the sorbents was examined through pH, and equilibrium measurements. Grafted alginate/chitosan beads presented higher sorption capacity for Pb ions than un-grafted beads.  相似文献   

15.
An electrodispersion reactor has been used to prepare calcium alginate (Ca-alginate) microgel beads in this study. In the electrodispersion reactor, pulsed electric fields are utilized to atomize aqueous mixtures of sodium alginate and CaCO3 nanoparticles (dispersed phase) from a nozzle into an immiscible, insulating second liquid (continuous phase) containing a soluble organic acid. This technique combines the features of the electrohydrodynamic force driven emulsion processes and externally triggered gelations in microreactors (the droplets) ultimately to yield soft gel beads. The average particle size of the Ca-alginate gels generated by this method changed from 412 +/- 90 to 10 +/- 3 microm as the applied peak voltage was increased. A diagram depicting structural information for the Ca-alginate was constructed as a function of the concentrations of sodium alginate and CaCO3 nanoparticles. From this diagram, a critical concentration of sodium alginate required for sol-gel transformation was observed. The characteristic highly porous structure of Ca-alginate particles made by this technique appears suitable for microencapsulation applications. Finally, time scale analysis was performed for the electrodispersion processes that include reactions in the microreactor droplets to provide guidelines for the future employment of this technique. This electrodispersion reactor can be used potentially in the formation of many reaction-based microencapsulation systems.  相似文献   

16.
The release of sodium polystyrene sulfonate (SPS) from calcium alginate hydrogel beads has been studied. It has been shown that the structure of the cross-linked calcium alginate network is of primary importance in the retention and/or release of the SPS. This has been evidenced by studying the influence of Ca2+ concentration, molar masses (Mn) and the ratio of mannuronic acid/guluronic acid components. A minimum in the SPS release is observed in relation with the organization of the network structure. Conditions inducing the organization of a strong gel (e.g. high Ca2+ concentration for example) are not always related to a low release. A good control of release is found when a compromise between a well-structured hydrogel and sterical consideration of SPS is reached.  相似文献   

17.
Alginate gel beads are used in many applications as matrices for release or immobilisation. Until now, the parameters (such as type and concentration of cation, ionic strength and pH) of the beads formation solution in which the Na-alginate solution was dropped were not deeply studied. Therefore, in this paper, the gel formation of alginate beads and their behavior in demineralized water has been investigated carefully. The results obtained in the present study about the gel formation showed that (1) the type and the concentration of the cation play a determinant role in the gel formation phenomenon giving beads of different volumes and characteristics; (2) the weight and volume losses occurring in the ‘syneresis’ are essentially by water elimination; (3) NaCl, which gives the ionic strength of the beads formation solution, plays two roles: a competitor with calcium and a screen in the electrostatic repulsion; and (4) finally, the pH controls the gel formation process as regulator in the dissociation of the alginate and in the complexation of the calcium cations. A study by weight change dynamic analysis was also carried out. The results showed that the transfer of a bead from its formation solution into demineralized water provokes a modification of its volume, weight and stability. These results are important to understand the behavior of beads in their utilization medium.  相似文献   

18.
A series of semi-interpenetrating, polymer network (semi-IPN), hydrogel beads, composed of calcium alginate (Ca-alginate) and poly(N-isopropylacrylamide) (PNIPAAM), were prepared for a pH/temperature-sensitive drug delivery study. The equilibrium swelling showed the independent pH- and thermo- responsive nature of the developed materials. At pH=2.1, the release amount of indomethacin incorporated into these beads was about 10% within 400 min, while this value approached to 95% at pH=7.4. The release rate of the drug was higher at 37 degrees C than that at 25 degrees C and increased slightly with increasing PNIPAAM content. These results suggest that the Ca-alginate/PNIPAAM beads have the potential to be used as an effective pH/temperature sustainable delivery system of bioactive agents. [GRAPHS: SEE TEXT] A summary of the temperature- and pH-dependence on the release of the drug over a period of 450 min. The effect of the temperature on the swelling of the beads is shown in the inset.  相似文献   

19.
《先进技术聚合物》2018,29(2):884-895
In the present work, new matrix bead formulations based on linear and branched polysaccharides have been developed using an ionic gelation technique, and their potential use as oral drug carriers has been evaluated. Using calcium chloride as a cross‐linking agent and sodium diclofenac (SD), as a model drug, acacia gum–calcium alginate matrix beads were formulated. The response surface methodology based on 32 factorial design was used as a statistical method to evaluate and optimize the effects of the biopolymers‐blend ratio and the concentration of calcium chloride on the particle size (mm), density (g/cm3), drug encapsulation efficiency (%), and the cumulative drug release after 8 hours (R8h,%). The optimized beads with the highest drug encapsulation efficiency were examined for a drug‐excipients compatibility by powder X‐ray diffraction, differential scanning calorimetry, thermo‐gravimetric analysis, and Fourier transform‐infrared spectroscopy analyses. The swelling and degradation of the matrix beads were found to be influenced by the pH of medium. Higher degrees of swelling were observed in intestinal pH than in stomach pH. Accordingly, the drug release study showed that the amount of SD released from the acacia gum–calcium alginate beads was higher in intestinal pH than in stomach pH. Therefore, the in vitro drug release from the SD‐loaded beads appears to follow the controlled‐release (Hixson‐Crowell) pattern involving a case‐2 transport mechanism operated by swelling and relaxation of the polymeric blend matrix.  相似文献   

20.
The uptake behavior of long-lived radionuclides such as 134Cs (2.06 years), 137Cs (30 years) or 133Ba (10.54 years) on calcium alginate (CA) beads have been investigated. The CA beads are able to remove 133Ba (92%) at pH 7 after 90 min of exposure from the binary mixture of two. The separation method of short-lived daughter 137Ba (2.55 min) from its long-lived parent 137Cs (30 years) using this CA beads have also been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号