首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absolute kinetic energy distributions and yields associated with ground state 3P and excited state 1D oxygen atoms have been obtained for O anion electron stimulated desorption from condensed O2 in the electron energy range 6–15 eV. The observed yields are understood as resulting essentially from dissociative electron attachment reactions via the two lowest 2Σ+g O2 resonance states through adiabatic and non-adiabatic transitions to the limits O(2P) + O(3P) and O(2P) + O(1D). The kinetic energy distributions show the prominent role of electron multiple collision processes and post-dissociation interactions of the O anions in the condensed phase.  相似文献   

2.
Three-dimensional trajectory surface hopping calculations were performed on two diabatic energy surfaces. The covalent surface describes the K(2S) + O2(3Σg) state and the ionic surface K+(1S) + O2(2Πg). Transitions from one surface to another were computed through the Landau—Zener model. At small deflection angles, the energy loss distribution exhibits two peaks, as observed, due to O2 in its electronic ground state and to vibrationally excited O2.  相似文献   

3.
The fraction FΣ of excited-state oxygen formed as b 1Σg+ was determined for a series of triplet-state photosensitizers in CCl4 solutions. FΣ was determined by monitoring the intensities of (a) O2(b 1Σg+) fluorescence at 1926 nm (O2(b 1Σg+)→O2(a 1Δg) and (b) O2(a 1 Δg) phosphorescence at 1270 nm (O2(a 1Δg) → O2(X3Σg)). Oxygen excited states were formed by energy transfer from substituted benzophenones and acetophenones. The data indicate that FΣ depends on several variables including the orbital configuration of the lowest triplet state and the triplet-state energy. The available data indicate that the sensitizer-oxygen charge transfer (CT) state is not likely to influence FΣ strongly by CT-mediated mixing of various sensitizer-oxygen states.  相似文献   

4.
EPR measurements reveal remarkable differences on the type of radicals produced after UV illumination of TiO2, CeO2 and 0.8% CeO2/TiO2 photocatalysts. Photoactivation of the TiO2 sample in vacuum results in the formation of Ti4+–O species and a small amount of Ti3+ centers. In the presence of adsorbed oxygen, irradiation of this material also generates Ti4+–O3 radicals. In the case of the CeO2/TiO2 catalyst, the ceria component is present in a highly dispersed state, as indicated by XRD and UV–Vis diffuse reflectance spectra (DRS) results. Accordingly, the only type of Ce4+–O2 adducts generated on the CeO2/TiO2 sample are indicative of the presence of two-dimensional patches of ceria on the anatase surface. On the other hand, photoactivation of the CeO2/TiO2 sample in the presence of oxygen also leads to the formation of some Ti4+–O and Ti3+ centers. In the case of the CeO2 sample, superoxide radicals are observed upon irradiation in vacuum and subsequent oxygen adsorption. Further irradiation of this material in the presence of oxygen increases the amount of Ce4+–O2 radicals and simultaneously generates new species, which are tentatively assigned to Ce4+–O2H radicals. Photocatalytic activity was tested for toluene oxidation, and the results obtained show that the photodegradation rate is slightly lower for CeO2/TiO2 than for the TiO2 sample. However, the selectivity towards benzaldehyde (6–13%) is comparable for both materials. In the case of CeO2, the photo-oxidation rate is an order of magnitude lower than for TiO2, although mineralization of toluene is almost complete. Photoactivity results are discussed in connection with the characteristics of the radicals observed.  相似文献   

5.
A mixture of NF3 and Ar is passed through an rf discharge in a flow-system to produce, among other species, F and NF2. When H2, D2, or CH4 are added downstream, reactions with F atoms produce vibrationally excited HF or DF together with H, D, or CH3. The latter free radicals can react with NF2, probably by an elimination reaction to produce electronically excited NF: NF2(2B1) + H(D, CH3) → HF*(DF* + NF(a1Δ). A vibrational-to-electronic energy transfer process between the products of this reaction then produces the next higher state of NF: HF(ν 2) + NF(a1Δ) → HF(ν−2) + NF(b1Σ+). A similar transfer process has also been found between the electronically excited a1Δ states of O2 and NF: O2(a1Δ) + NF(a1Δ) → O2(X3Σ) + NF(b1Σ+). The H or D atoms but not the CH3 radicals are then found to react with either NF(a1Δ) or NF(X3Σ) to produce electronically excited N(2D) atoms, which in turn react with the NF(a1Δ) molecules to produce N2(B3Πg). The observed nitrogen first positive radiation has been demonstrated to be produced entirely by this reaction mechanism rather than by the N(4S) recombination that accounts for the Rayleigh afterglow. In addition, the occurrence of the reaction N(2D) + N2O → NO(B2Πr) + N2 (X1Σ+g) has been verified. Finally we have observed emission at 3344 Å, which we attribute to the NF(A3Π), which has not been previously reported.  相似文献   

6.
The radiative lifetimes of the b1Σ+ and a1Δ states have been evaluated by perturbation expansions including X3Σ, a1Δ, b1Σ+, 13,1Π, 23,1Π, 23Σ and 21Σ+ states. All wavefunctions result from large MRD CI calculations. The b—X transition is dominated by the parallel transition moment; it is found to be much stronger than the a—X transition. The calculated radiative lifetimes of τ(1Σ+)=18 ms, τ(1Δ)=2.2 s for NF and τ(1Σ+)=2.5–3.5 ms for NCl are in good accord with corresponding experimentally deduced values. The lifetime for the a1Δ state in NCl is found to be τ(1Δ)=1.1 s, ie. much longer than derived from a recent experiment. Its magnitude is consistent with the τ(b1Σ+)/τ(a1Δ) ratio of similar systems and with the decrease in lifetime from NF to NCl and is thus believed to be quite reliable. A detailed analysis of all contributions of the perturber states to the transition mechanism is made and comparison with the related data in SO, O2 and S2 is undertaken. The b-a transition probability dominated by the quadrupole transition is fairly constant in all the systems in the order of A = 0.013 (NF) - 0.0013 (S2) s−1.  相似文献   

7.
Saddle point geometries and barrier heights have been calculated for the H abstraction reaction HO2(2A″)+H(2S) → H2(1Σ+g)+O2(3Σg) and the concerted H approach-O removing reaction HO2 (2A″)+H(2S) → H2O(1A1)+O(3P) by using SDCI wavefunctions with a valence double-zeta plus polarization basis set. The saddle points are found to be of Cs symmetry and the barrier heights are respectively 5.3 and 19.8 kcal by including size consistent correction. Moreoever kinetic parameters have been evaluated within the framework of the TST theory. So activation energies and the rate constants are estimated to be respectively 2.3 kcal and 0.4×109 ℓ mol−1 s−1 for the first reaction, 20.0 kcal and 5.4.10−5 ℓ mol−1 s−1 for the second. Comparison of these results with experimental determinations shows that hydrogen abstraction on HO2 is an efficient mechanism for the formation of H2 + O2, while the concerted mechanism envisaged for the formation of H2O + O is highly unlikely.  相似文献   

8.
Predissociation of the A 2Σ+ state is treated by an exact theory employing two frame transformation matrices, each of which connects the atomic term limits (O(3P) and O(1D)) to the correlating adiabatic Born—Oppenheimer states. Resonances corresponding to the higher (v 7) rovibrational levels of the A 2Σ+ state are predicted to have asymmetric (Fano-type) profiles. The branching ratios of O(3Pj, J = 0, 1, 2) are shown to be influenced by nonadiabatic interactions in the Franck—Condon region between the A 2Σ+ and dissociative 4Σ, 2Σ and 4Π states. The branching ratios show a strong variation along asymmetric resonances, while remaining energy independent along Lorentzian resonances.  相似文献   

9.
Mg+—Ar ion—molecule complexes are produced in a pulsed supersonic nozzle cluster source. The complexes are mass selected and studied with laser photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer system. An electronic transition assigned as X 2Σ+2Π is observed with an origin at 31387 cm−1 (vac) for 24Mg+—Ar. The 24Mg+—Ar spectrum is characterized by a 15 member progression with a frequency (ω′e) of 272 cm−1. An extrapolation of this progression fixes the excited state dissociation energy (Do) at 5552 cm−1. The corresponding ground-state value (Do) is 1270 cm−1 (3.6 kcal/mol). The 2Π , spin—orbit splitting is 76 cm.  相似文献   

10.
A laser pulse-and-probe method has been used to determine the nascent vibrational populations in NO(v=0–4) and O2(v=6–11) formed in the thermal reaction: O(3P) + NO2 → O2(v) + NO(v). A frequency-tripled Nd: YAG laser is used to photolyse NO2, diluted tenfold in Ar, and laser-induced fluorescence spectroscopy in the NO A 2Σ+-X 2Π and O2 B 3Σu -X 3Σg electronic band system is used both to follow the kinetics of individual vibrational states and to determine the nascent vibrational distributions. The majority of the NO product is formed in v = 0 and the average vibrational yield is ≈ 4.6%. The O2 populations fall monotonically from v = 6 to 11 in a distribution close to what is expected on prior grounds. Based on a surprisal analysis, the average vibrational energy yield in O2 is ≈ 26%. The nature of the reaction dynamics is discussed.  相似文献   

11.
Gaussian-2 ab initio calculations were performed to examine the six modes of unimolecular dissociation of cis-CH3CHSH+ (1+), trans-CH3CHSH+ (2+), and CH3SCH2+ (3+): 1+→CH3++trans-HCSH (1); 1+→CH3+trans-HCSH+ (2); 1+→CH4+HCS+ (3); 1+→H2+c-CH2CHS+ (4); 2+→H2+CH3CS+ (5); and 3+→H2+c-CH2CHS+ (6). Reactions (1) and (2) have endothermicities of 584 and 496 kJ mol−1, respectively. Loss of CH4 from 1+ (reaction (3)) proceeds through proton transfer from the S atom to the methyl group, followed by cleavage of the C–C bond. The reaction pathway has an energy barrier of 292 kJ mol−1 and a transition state with a wide spectrum of nonclassical structures. Reaction (4) has a critical energy of 296 kJ mol−1 and it also proceeds through the same proton transfer step as reaction (3), followed by elimination of H2. Formation of CH3CS+ from 2+ (reaction (5)) by loss of H2 proceeds through protonation of the methine (CH) group, followed by dissociation of the H2 moiety. Its energy barrier is 276 kJ mol−1. On both the MP2/6-31G* and QCISD/6-31G* potential-energy surfaces, the H2 1,1-elimination from 3+ (reaction (6)) proceeds via a nonclassical intermediate resembling c-CH3SCH2+ and has a critical energy of 269 kJ mol−1.  相似文献   

12.
The low lying electronic states of the molecule MoN were investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) calculations. The relativistic corrections for the one electron Darwin contact term and the relativistic mass-velocity correction were determined in perturbation calculations. The electronic ground state is confirmed as being 4. The chemical bond of MoN has a triple bond character because of the approximately fully occupied delocalized bonding π and σ orbitals. The spectroscopic constants for the ground state and ten excited states were derived. The excited doublet states 2, 2Γ, 2Δ, and 2+ are found to be lower lying than the 4Π state that was investigated experimentally. Elaborate multi-configuration configuration-interaction (MRCI) calculations were carried out for the states 4 and 4∏ using various basis sets. The spectroscopic constants for the 4 ground state were determined as re=1.636 Å and ωe=1109 cm−1, and for the 4∏ state as re=1.662 Å and ωe=941 cm−1. The values for the ground state are in excellent agreement with available experimental data. The MoN molecule is polar with a charge transfer from Mo to N. The dipole moment was determined as 2.11 D in the 4 state and as 4.60 D in the 4∏ state. These values agree well with the revised experimental values determined from molecular Stark spectroscopic measurements. The dissociation energy, De, is determined as 5.17 eV, and D0 as 5.10 eV.  相似文献   

13.
Large-scale MRD CI calculations assign to AlP the ground state X 3Σ (9σ22) and a close-lying state 1 3Π (9σ3π3) (Te = 0.08 eV). Up to transition energies of 2.0 eV, other states are described by the configurations 9σ3π3 (11Π), 8σ24 (1 1Σ+), 9σ22 (1 1Δ and 2 1Σ+) and 9σ3π24π (1 5Π). The 2 3Π state, located at ≈ 2.30 eV, shows a shallow double minimum. Numerous perturbations are expected to induce predissociation upon 2 3Π. Multiplets arising from the occupation 8σ234π are clustered in the 3.25–3.50 eV region. Quintet states with the configuration 8σ9σ3π34π are bound, with Te values (in eV) of 3.80 (1 5Σ+), 4.44 (1 5Δ) and 4.88 (3 5Σ), respectively. The 9σ → 4s Rydberg members 5Σ and 3Σ lie in the 4.58–4.72 eV energy region. The first ionization potential (ionization to X4Σ of AlP+, 9σ → ∞) is estimated to be 7.65 eV. Ionization to the 1 2Σ and 1 2Π states of AlP+ is suggested to occur between 8.0 and 8.8 eV. The dipole moments of X 3Σ, 1 1Δ and 2 1Σ+ are close to 1.0 D, whereas the 1 1Σ+ state has μ = 3.49 D; 1 3Π and 1 1Π have dipole moments from 2.45 to 2.91 D. All low-lying states show a polarity Al+P. Finally, the electronic structure and transition energies of AlP are compared with those of the isoelectronic species BN, AIN, and SiP+.  相似文献   

14.
The A 2Πu-X 2Πg electronic emission spectrum of I2+ has been recorded at a low rotational temperature in a crossed molecular beam/electron beam apparatus. Six vibrational sequences with five or more members have been assigned to progressions in ν′, giving ω′e = 122±8 cm−1, but a full vibrational analysis has not been possible. It is not known whether this is due to the relatively poor resolution (≈5 cm−1) at which the spectrum has been recorded or because the A 2Πu state is perturbed in one or both spin-orbit components. Existing data on the A state of I2+ are reviewed.  相似文献   

15.
The triplet state (32T) and the radical cation (2T+√) of 2,2′-bithiophene (2T) are characterized by pulse radiolysis in CCl4. Two main absorption bands at 360 and 420 nm are respectively attributed to 32T* and to 2T+√. The triplet, induced in an excited state through a Förster mechanism, undergoes a conformational rearrangement (k6=(6.8±0.9)×106 s−1). The radical cation is produced both through a resonance charge transfer and a second diffusional process; the two oxidizing species are respectively CCl4+√ and (CCl+3Cl)solv through the mediation of a singlet excited state, 12T*.  相似文献   

16.
The radiative lifetimes of nine vibrational levels of the C3(1Πu) radical were obtained from decay time studies of the C3(1Πu1Σ+g) fluorescence induced by a tunable dye laser. The lifetimes of the different vibronic levels were found to be constant within the experimental error limits, namely, τo = (200 ± 10) ns. The collisional deactivation of the C3(1Πu) states by helium gives rate constants between 2.5 and 4 in 10−11 cm3 molecule−1 s−1 units.  相似文献   

17.
Absorption and fluorescent scattering of nitrogen laser radiation by a low-pressure RF laboratory plasma (ne = 1012 cm−3) has been observed for the first negative system of N2+. A 67±1 ns lifetime of N2+ (B 2Σu+) was experimentally measured from the laser-induced fluorescence. In addition, enough collisionally excited N2 (B 3Πg) was produced to observe laser-induced fluorescence for the second positive system of N2. The lifetime of N2 (C 3Πu) was found to be 41±2 ns. The measured lifetimes are in good agreement with published values calculated from theory.  相似文献   

18.
Large-basis-set calculations of near Hartree-Fock accuracy were performed on CO+(1σ-hole 2Σ+) and CO+)2σ-hole, 2Σ+); correlation energies for these systems and for CO were calculated using an atoms-in-molecule approach, relativistic energies and vibrational structure corrections were also considered. The results are: IP(CO, 1σ) = 542.4 (542.57) eV, IP(CO,2σ) = 297.0 (296.24) cV, Dc(CO, 1Σ+) = 10.8 (11.1) Ev, D3(CO+, 1σ, 2Σ+) = 11.9 eV, De(CO+, 2σ, 2Σ+) = 9.1 eV, where IP and De stand respectively for ionization potential and dissociation energy, and where the numbers in parentheses refer to the most recent experimental values. The electron transfers resulting from the ionization of inner-shell electrons are discussed. Finally a quantitative correlation is developed correlating absolute chemical shifts to charge densities. Agreement between the calculated values and those derived from the correlation is quite satisfactory.  相似文献   

19.
The rate constants at which oxidizing and reducing radicals react with the dinuclear iron(III) complex Fe2O(ttha)2− were measured in neutral aqueous solution. The rate constants for reduction of the complex by ·CO2.− CH3.CHOH and O2.− were found to be comparable with rate constants previously measured in mononuclear iron(III) polyaminocarboxylate systems. Fe2O(ttha)2− reacts slowly with O2.− (k8 = (1.2 ± 0.2) × 104 dm3 mol−1 s−1) and, hence, is a relatively poor catalyst for the dismutation of superoxide radical. The hydrated electron reduces the complex at a diffusion-controlled rate in a process which consumes one proton: eaq + Fe2O(ttha)2− → Fe2III,IIO(ttha)3− The reduction by carbon-centered radicals produces a (III,II) mixed-valence complex with an absorption spectrum different from that of the Fe2(II,III) species produced from reduction by the hydrated electron. The oxidizing radicals .OH and ·CO3 appear to act as reductants of the complex via ligand oxidation rather than by oxidation of the Fe2IIIO core to Fe2III,IVO. In the former case ligand attack appears to occur mainly at the methylene carbon of a glycinate group. The decarboxylation product, CO2, was detected by its aquation reaction in the presence of a pH sensitive dye, bromthymol blue.  相似文献   

20.
The spectrum of SO (X3Σ) has been observed following the flash excitation of sulphur dioxide with radiation above 250 nm. Sulphur monoxide is produced via an excited molecule mechanism involving triplet SO2. The rate constant for the reaction 3SO2 + SO2 was measured as (3.1 ± 1) × 108 M−1 sec−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号