首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the nature of transient metal and chemical treatment of binary cathodic PtM/C (M = Co, Ni, Cr) catalysts, which were prepared by high-temperature synthesis, on their structure, surface segregation, and characteristic properties (activity and stability) is studied. It is shown that, in the course of treatment in 0.5 M H2SO4 at the elevated temperature (60°C), the surface of nanoparticles becomes enriched in platinum with the formation of core-shell structures. The PtCo/C catalyst is the most efficient one. In this case, a compromise between the corrosion resistance and electrocatalytic activity is reached due to a higher, as compared with PtNi/C and PtCr/C, degree of alloy formation and enriching of surface in platinum in the course of corrosive attack. Thereby, the properties of platinum on the core surface change as a result of a pronounced ligand effect of the core. Thus, depending on the nature of transient metal, the binary cathodic PtM/C catalysts differ in their activity and stability, which depend on the degree of alloy formation and a possibility of formation of core-shell structure as a result of surface segregation in the course of synthesis and chemical treatment.  相似文献   

2.
Main experimental approaches for obtaining polymer, inorganic and hybrid colloidal particles as well as the tailored functionalization of their surface by oligoperoxide surfactants (OPS) and metal complexes (OMC) on their basis are discussed in the paper. The methods proposed enable to combine the stage of the formation of colloidal polymer, siliceous, metal and metal-oxide particles with the stage of their surface modification by functional surface-active oligoperoxides, which are sorbed irreversibly. Novel functional particles are studied by chemical, colloidal-chemical, rheological methods and scanning electronic microscopy. The occurrence of metal and metal oxide particle formation in distinct zones correlates well with the particle size distribution. The availability of reactive ditertiary peroxidic fragments on the particle surface as a result of OPS or OMC sorption causes their reliable protection, hydrophobity and ability to form free radicals and participate in elementary stages of radical processes.  相似文献   

3.
The stable form of adsorbed sulfur species and their coverage were investigated on Rh, Ni, and Rh-Ni binary metal surfaces using density functional theory calculations and the ab initio thermodynamics framework. S adsorption, SO(x) (x = 1-4) adsorption, and metal sulfide formation were examined on Rh(111) and Ni(111) pure metals. Both Rh and Ni metals showed a preference for S surface adsorption rather than SO(x) adsorption under steam reforming conditions. The transition temperature from a clean surface (<(1)/(9) ML) to S adsorption was identified on Rh(111), Ni(111), Rh(1)Ni(2)(111), and Rh(2)Ni(1)(111) metals at various P(H(2))/P(H(2)S) ratios. Bimetallic Rh-Ni metals transition to a clean surface at lower temperatures than does the pure Rh metal. Whereas Rh is covered with (1)/(3) ML of sulfur under the reforming conditions of 4-100 ppm S and 800 °C, Rh(1)Ni(2) is covered with (1)/(9) ML of sulfur at the lower end of this range (4-33 ppm S). The possibility of sulfate formation on Rh catalysts was examined by considering higher oxygen pressures, a Rh(221) stepped surface, and the interface between a Rh(4) cluster and CeO(2)(111) surface. SO(x) surface species are stable only at high oxygen pressure or low temperatures outside those relevant to the steam reforming of hydrocarbons.  相似文献   

4.
Sodium titanate nanotube/titanium metal composites were synthesized by hydrothermal treatment of titanium metals with various morphologies such as plate, wire, mesh, microsphere, and microtube at 160 degrees C in aqueous NaOH solution and by the subsequent fixation treatment by calcination at 300 degrees C. The surface of the composite was covered with sodium titanate nanotubes with a diameter of approximately 7 nm, and the core part of the composite was titanium metal phase. The raw titanium metal acts as a template or a morphology-directing agent of micrometer size or more to arrange the nanotubes as well as a titanium source for the formation of nanotubes. The concentration of titanium species increases in the reaction solution as the dissolution of titanium metal is accelerated by the reaction between titanium and OH-. Furthermore, with an increase in concentration of titanium species in the reaction solution, the titanium species are re-precipitated as sodium titanate nanotubes onto the titanium metal. Titanium metal with a large surface area and volume can form sodium titanate nanotubes on the surface of the titanium metal, though titanium metal with a small volume and surface area tends to dissolve with the hydrothermal treatment. Even in the synthesis using titanium metal with a small volume and surface area, sodium titanate nanotubes are formed and cover the surface of the titanium metal by adding another titanium metal as a source of titanium species in the reaction solution.  相似文献   

5.
Magnesium ions, which exist in formation water and injection water under downhole conditions in the oil and gas production industry, are a key determinant in the CaCO3 scale formation. Many studies have focused their attention on the effect of magnesium on the kinetics, the morphology and the content of Mg in the Ca-CO3 scale. Little attention has been paid to the effect of Mg^2 on the initial stages of CaCO3 formation on a metal surface. In this study, an electrochemical technique was used to study the influence of Mg^2 on the ini-tial stages of CaCO3 scale formed on a metal surface. With this electrochemical technique, the reduction of the dissolved oxygen in an analysis solution is considered on the surface of a rotating disk electrode (RDE) un-der potentiostatic control. The rate of oxygen reduction on the surface of the RDE enables the extent of sur-face coverage of scale to be assessed. With this electrochemical technique, a new insight into the effect of Mg^2 on CaCO3 scale formed on a metal surface is given.  相似文献   

6.
The rate, potential and mechanism of the anodic oxidation of aliphatic aldehydes have been found to be highly dependent on solution conditions and electrode material. Aldehyde oxidations in neutral acetonitrile on glassy carbon occur at very positive potentials (ca. +3 V vs. SCE) and the peak potentials correlate with the ionization potentials of the aldehydes. In aqueous base, aldehyde oxidation is assisted by reversible addition of hydroxide to the carbonyl group to form electroactive gem-diolate (II). Oxidations of aldehydes in aqueous base on Hg, Ni, Ag and Au all yield the corresponding carboxylate via two-electron oxidation plus aldol and Cannizzaro byproducts and the oxidations occur at potentials far negative of the unassisted oxidation in neutral acetonitrile. On Ni, Cu and possibly Hg the oxidation involves the formation of a metal oxide which acts as a chemical oxidizing agent. On Ag and Au the oxidations take place on a surface which is not covered by a phase oxide. A mechanism involving a direct electrochemical process with oxidation of gem-diolate adsorbed on an oxide-free metal surface is proposed. A pulsed electrolysis technique was utilized to circumvent deactivation of Ag and Au electrodes during electrolysis and preparation of an “aurized” gold surface with a much slower deactivation rate is described.  相似文献   

7.
Aluminum oxide coated cellulose fibers were modified, by an impregnation procedure, with n-propylpyridinium chloride silsesquioxane polymer. Good adherence of the polymer to the surface of modified cellulose fibers was obtained due to the Al-O-Si bond formation. The metal X-ray mapping showed that aluminum oxide and the silsequioxane polymer (Al and Si mapping) are highly dispersed on the fiber's surface. The ion exchange capacity of the material, determined on basis of exchangeable chloride ions, was 1.1 mmol g-1. The adsorption isotherms of FeCl3, CuCl2, and ZnCl2 from ethanol solutions were determined for each metal. The adsorption capacities were (in mmol g-1): FeCl3 = 0.82, CuCl2 approximately ZnCl2 = 0.37. The metal ions are adsorbed as anionic complex species by the following equilibrium reaction: + MCln right arrow over left arrow Copyright 1999 Academic Press.  相似文献   

8.
Electrochemical and corrosion behaviour of metals in alcohols are the subject of numerous investigations because of the application of mentioned solvents in chemical engineering, production of oxide nanoparticles (sol-gel techniques) and application of alcohols as fuels. Despite relatively rich bibliography related to electro-catalytic oxidation of alcohols on metal surface in mixed aqueous–alcohol solutions, the knowledge of the mechanism of reactions on metal/anhydrous alcohol interface is still not sufficient. Anodic oxidation of metal surface in alcohol leads to several electro-catalytic reactions with formation of surface compounds being the product of metal and alcohol oxidation. Identification of these products is very difficult. Therefore, our knowledge of the composition and structure of passive films or corrosion products on metal surface in anhydrous alcohol solvents is poor. Our paper presents the investigations of anodic behaviour of metals (Cu, Zn, Fe, Ni, Al and Ti) and semiconductors (p-Si) in methanol solutions of electrolytes, performed in our laboratory within the last 10 years. On the base of electrochemical measurements (linear sweep voltammetry, electrochemical impedance spectroscopy), spectroscopic investigations (X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy and low-energy electron diffraction) and scanning electron microscopy techniques, the role of metal–alcohol intermediates in the formation of surface and soluble compounds is discussed. The practical application of electrochemical etching of metals as a method of production of micro- and nanoparticles of metals and oxides is also shown.  相似文献   

9.
The self-motion of a 1,10-phenanthroline disk on divalent metal ion aqueous solutions was investigated as a simple autonomous motor coupled with complex formation. The characteristic features of motion (continuous and oscillatory motion) and their concentration regions differed among metal ions, and the frequency of oscillatory motion depended on the temperature of the aqueous solution. The nature of the characteristic motion is discussed in relation to the stability constant of complex formation between phenanthroline and a metal ion, and the difference in surface tension between phenanthroline and its metal complex as the driving force.  相似文献   

10.
《Progress in Surface Science》2001,67(1-8):139-154
The ability for bivalent charge transfer (CT) during hydrogen adsorption on transition metal surfaces and in the course of transition metal hydride formation is discussed. The change of the dipole moment of hydrogen adatoms, caused by transition from a strongly bound adsorption state to a weakly bound state, is demonstrated. The possibility of the CT reversion between the hydrogen adsorbate and the transition metal adsorbent, caused by a change of the surface structure, is described. The CT within the adsorbate, corresponding to the distinguished steps of the process of transition metal hydride formation, is shown.  相似文献   

11.
With better understanding and control of metal layer formation on carbon surface, the electrical, magnetic, thermal, interfacial, and catalytic characteristics of carbon-based micro- and nanomaterials can be further improved for large-scale engineering applications. Experiments demonstrated that controlled metal electrodeposition on micro- and nanocarbon fibers can be realized in a cost-effective and reproducible fashion. Microbeam synchrotron X-ray diffraction and fluorescence techniques have been developed to provide in situ characterization capabilities to reveal the nuclei formation and growth processes on individual carbon microfibers with size, distribution, and microstructural information. The nuclei stability of the metal deposit is found to have strong dependence on its size as well as the deposition condition.  相似文献   

12.
Spontaneous formation and efficient stabilization of gold nanoparticles with an average diameter of 7 approximately 20 nm from hydrogen tetrachloroaureate(III) hydrate (HAuCl4.3H2O) were achieved in air-saturated aqueous poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer solutions at ambient temperature in the absence of any other reducing agent. The particle formation mechanism is considered here on the basis of the block copolymer concentration dependence of absorption spectra, the time dependence (kinetics) of AuCl4- reduction, and the block copolymer concentration dependence of particle size. The effects of block copolymer characteristics such as molecular weight (MW), PEO block length, PPO block length, and critical micelle concentration (cmc) are explored by examining several PEO-PPO-PEO block copolymers. Our observations suggest that the formation of gold nanoparticles from AuCl4- comprises three main steps: (1) reduction of metal ions by block copolymer in solution, (2) absorption of block copolymer on gold clusters and reduction of metal ions on the surface of these gold clusters, and (3) growth of metal particles stabilized by block copolymers. While both PEO and PPO blocks contribute to the AuCl4- reduction (step 1), the PEO contribution appears to be dominant. In step 2, the adsorption of block copolymers on the surface of gold clusters takes place because of the amphiphilic character of the block copolymer (hydrophobicity of PPO). The much higher efficiency of particle formation attained in the PEO-PPO-PEO block copolymer systems as compared to PEO homopolymer systems can be attributed to the adsorption and growth processes (steps 2 and 3) facilitated by the block copolymers. The size of the gold nanoparticles produced is dictated by the above mechanism; the size increases with increasing reaction activity induced by the block copolymer overall molecular weight and is limited by adsorption due to the amphiphilic character of the block copolymers.  相似文献   

13.
Metal carbonyls react on metal oxide surfaces to give a wide range of structures analogous to those of known compounds. The reactions leading to formation of surface-bound metal carbonyls are explained by known molecular organometallic chemistry and the functional group chemistry of the surfaces. The reaction classes include formation of acid-base adducts as the oxygen of a carbonyl group donates an electron pair to a Lewis acidic center; nucleophilic attack at CO ligands by basic surface hydroxyl groups or O2? ions; ion-pair formation by deprotonation of hydrido carbonyls to give carbonylate ions; interaction of bifunctional complexes with surface acid-base pair sites such as [Mg2⊕O2?]; and oxidative addition of surface hydroxyl groups to metal clusters. The reactions of surface-bound organometallic species include redox condensation and cluster formation on basic surfaces (paralleling the reactions in basic solution) as well as oxidation of mononuclear metal complexes and oxidative fragmentation of metal clusters by reaction with surface hydroxyl groups. Most supported metal carbonyls are unstable at high temperatures, but some, including osmium carbonyl cluster anions on the basic MgO surface, are strongly stabilized in the presence of CO and are precursors of catalysts for CO hydrogenation at 550 K.  相似文献   

14.
Bimetallic catalysts PtM (M = Co, Ni, or Cr) are synthesized. They exceed purely platinum commercial catalyst E-TEK (20 wt % Pt) in its mass activity (mA/mgPt) and specific activity (mA/cPt2) in the oxygen reduction reaction. According to XRD data, the high-temperature synthesis involving metal N4-complexes, chloroplatinic acid, and XC72 carbon black as precursors, yields alloys (or solid solutions) of the metals. The higher activity of the bimetallic catalyst PtCo/C is likely to be caused by the practically entire formation of solid solutions (Pt3Co and PtCo), unlike PtNi and PtCr where nickel and chromium exist also as oxides that decorate the electrode surface and partly block active centers. It is shown that the mechanism of the oxygen reduction reaction at the synthesized catalysts is similar to that of oxygen reduction at the purely platinum catalyst. The slow stage in the process is transfer of the 1st electron; at potentials more positive than 0.6 V the reaction mainly yields water. The higher electrocatalytic activity of the bimetallic systems is caused by the alloy formation, which leads to changes in the bond length between platinum atoms. The achieving of the optimal bond length, as a result of the alloy formation, provides appropriate conditions for dissociative adsorption of oxygen molecules; the surface coverage with oxygen-containing particles adsorbed from water (which block active centers for O2 adsorption) decreased. The increase in the activity may also be caused by the formation of the “core-shell” structures whose surface is enriched with platinum whose surface properties are changed under the ligand action of the core formed by the metal alloy  相似文献   

15.
The adsorption behavior of the cationic surfactant N-decyl-N,N,N-trimethylammonium triflate (DeTATf) on the Au(111) electrode surface was characterized using cyclic voltammetry, differential capacity, and chronocoulometry. The thermodynamics of the ideally polarized electrode have been employed to determine the Gibbs excess and the Gibbs energy of adsorption. The results show that the adsorption of DeTATf has a multistate character. At low bulk DeTATf concentrations, the adsorption state is consistent with the formation of an adsorbed film of nearly flat molecules. At higher concentrations this film may represent a three-dimensional aggregated state. At negative potentials and charge densities close to 0 microC cm-2, the data suggest the formation of a film of tilted molecules oriented with the hydrocarbon tail toward the metal surface and the polar head toward the solution. A surprising result of this study is that DeTATf displays adsorption characteristics of a zwitterionic rather than a cationic surfactant. This behavior indicates that the adsorbed species is an ion pair.  相似文献   

16.
The salicylate anion (ortho-hydroxy-benzoate-C6H4OHCOO) interacts with common metals forming a semi-passivating layer on the surface. This semi-passivating layer allows the application of relatively high positive potentials without significant dissolution of the metal. It enables the electro-synthesis of conducting polymers (e.g. polyaniline, polypyrrole) directly on the metal surface, and such polymeric layers can act as anti-corrosion materials. Notwithstanding this characteristic, the behavior of salicylate on different metal surfaces is not yet well-understood. In the present work, the interaction of salicylate with copper (a metal of great interest in the industry) was studied. For this purpose, in situ surface enhanced raman scattering (SERS) and Fourier transform infrared absorption spectroscopy (FTIRAS) experiments were performed. The results show the formation of a copper(II) salicylate complex in the solution since low potentials (ca. 0 V vs Ag/AgCl). At higher potentials, salicylate decomposition is observed. FTIR spectra show the formation of CO2 in solution, indicating salicylate decarboxilation. The SERS experiments indicate the breakage of the benzenic ring on the surface. It is suggested that at potentials above 0.6 V, a film of insaturated aliphatic chains linked by oxygen atoms is formed on the surface. This paper is dedicated in memoriam to Prof. Francisco Carlos Nart.  相似文献   

17.
High-temperature polyimide films with metallic gold surfaces can be fabricated by the incorporation of a soluble metal salt into a solution of polyamic acid. Thermal treatment of these solutions produces the polyimide, decomposes the metal salt to metallic gold, and promotes the formation and growth of the metallized surface. What appeared to be a continuous metallic surface was actually composed of large gold aggregates. It is suspected that the formation of colloidal gold during the initial thermal treatment provides precursors to the large metal aggregates. Thermal treatment has been shown to influence the size and distribution of the aggregates. The shape of the aggregates suggests that diffusion-limited aggregation may be responsible for the unique shape of some of the gold aggregates.  相似文献   

18.
The use of iron-containing metal surfaces, Fe, Fe-Cr-alloy and stainless steel, for the synthesis of mixed metal Ru-Fe compounds has been studied. The studied process was reductive carbonylation of RuCl3 in the presence of a metal surface. Reactions were carried out in ethanol solutions under 10-50 bar carbon monoxide pressure at 125 degrees C using an autoclave. During the reaction the metal surface was oxidized, releasing iron into the solution and acting as a sacrificial source of iron. Under these conditions the corrosion of the metal surface was facile and produced a series of iron-containing species. In addition to the formation of most obvious iron(II) products, such as [Fe(H2O)6]2+ or [FeCl2(H2O)4] the use of the metal surface also provided a route to novel labile trinuclear [Ru2Cl2(mu-Cl)4(CO)6FeL2] (L = H2O, EtOH) complexes. The stability and reactivity of the [Ru2Cl2(mu-Cl)4(CO)6FeL2] complexes were further studied using computational DFT methods. Based on the computational results a reaction route has been suggested for the formation and decomposition of [Ru2Cl2(mu-Cl)4(CO)6FeL2].  相似文献   

19.
A new carbocyclic compound, namely 3-benzoyl-4-hydroxy-4-phenyl-2,6-(4-methylphenyl)cyclohexane-1,1-dicarbonitrile (MPC) was synthesized and characterized. Herein, MPC was used as green compounds and its anti-corrosion performance was evaluated on the basis of singular role of electron donor–acceptor of MPC molecule. For this purpose, a combination of experimental studies and electronic-/atomic-scale calculations were performed in a bid to understand the electrochemical behavior and interfacial mechanism of MPC molecule based on the correlation between electron charge transfer and adsorption mechanism. Theoretical perspectives are also used to validate the significant inhibition feature achieved by the experimental studies and propose a mechanism of adsorption by using density functional theory (DFT) and molecular dynamic (MD) simulations. According to DFT and MD perspectives, it is found that MPC presents strong interaction with metal surface due to its considerable ability to provide lone pair electrons for electrophilic attacks. This is demonstrated by the high adsorption energy (-5.83 eV) and the parallel configuration of MPC which reveal the formation of molecular self-assembly triggered by an organic-surface interaction. The reliable corrosion stability was provided for 72 h of immersion at an optimum concentration with a fairly high inhibition efficiency (85.81 %) due to the formation of organic inhibitive layer. The addition of MPC inhibitor worked as a sealing agent to reduce the corrosion rate, thus forming a dense and protective barrier on the metal surface. The corrosion resistance of mild steel sample was enhanced significantly due to a high adsorption ability arising from the electron-rich nature of molecule. The formation of organic layer on the metal surface was discussed in relation to the intermolecular interactions and microstructural observations by considering the charge transfer behavior responsible for exceptional corrosion protection of steel alloys. The computational simulations were consistent with the experimental results and confirm the importance of developing eco-friendly hybrid materials.  相似文献   

20.
The design of silicon/alkyl layer/metal junctions for the formation of optimal top metal contacts requires knowledge of the mechanistic and energetic aspects of the interactions of metal atoms with the modified surface. This involves (a) the interaction of the metal with the terminal groups of the organic layer, (b) the diffusion of metal atoms through the organic layer and (c) the reactions of metal atoms with the silicon surface atoms. The diffusion through the monolayer and the metal catalyzed breakage of Si-C bonds must be avoided to obtain high quality junctions. In this work, we performed a comprehensive density functional theory investigation to identify the reaction pathways of all these processes. In the absence of a reactive terminal group, gold atoms may penetrate through a compact alkyl monolayer on Si(111) with no energy barrier. However, the presence of thiol terminal groups introduces a high energy barrier which blocks the diffusion of metals into the monolayer. The diffusion barriers increase in the order Ag < Au < Cu and correlate with the stability of metal-thiolate complexes whereas the barriers for the formation of metal silicides increase in the order Cu < Au < Ag in correlation with the increasing metallic radii. The reactivity of gold clusters with functionalized Si(111) surfaces was also investigated. Metal silicide formation can only be avoided by a compact monolayer terminated by a reactive functional group. The mechanistic and energetic picture obtained in this work contributes to understanding of the factors that influence the quality of top metal contacts during the formation of silicon/organic layer/metal junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号