首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TlGaSe2(1–x) S2x single crystals were grown by the modified Bridgman-Stockbarger method in our crystal growth laboratory. AIIIBIII C2 VI compounds are formed of elements from vertical groups of the periodic table (group III: Tl, Ga, In; group VI: Se, S, Te) and are classified into two types. The first type has a layer structure: TlGaSe2, TlGaS2 and TlInS2. The second type has a chained structure: TlInSe2, TlInTe2 and TlGaTe2. None of the grown crystals had cracks and voids on the surface. The freshly cleaved crystals had a mirror-like surface and there was no need for mechanical or chemical polishing treatments. By the hot probe technique, we have found that the crystals were of p-type. The ingots produced were single crystalline and the useful region of single crystal was 90% with steps of 10 K if changes were small, and with steps of 3 and 5 K if changes were large in the direct and indirect band gaps energies. The direct and indirect band gaps for TlGaSe2(1–x)S2x samples were calculated as a function of temperature.  相似文献   

2.
Optical absorption in MnGaInS4 single crystals has been studied. Direct and indirect optical transitions are found to occur in the range of photon energies of 2.37–2.74 eV and in the temperature range of 83–270 K. The temperature dependence of the band gap has been determined; its temperature coefficients E gd and E gi are −5.06 × 10−4 and −5.35 × 10−4 eV/K, respectively. MnGaInS4 single crystals exhibit anisotropy in polarized light at the absorption edge; the nature of this anisotropy is explained.  相似文献   

3.
The effect of the lattice deformation on the electronic spectra of TlGaS2, TlGaSe2, and TlInS2 layered semiconductor crystals is analyzed. It is shown that changes in the band gap of these semiconductors due to thermal expansion and a change in the composition under hydrostatic or uniaxial pressure can be described within a unified model of the deformation potential. The main feature of this model is the inclusion of deformation potentials with different signs, which is characteristic of other semiconductors with a layered structure. An analysis of the lattice deformation of the studied semiconductors in terms of the proposed model of the deformation potential has revealed that, in the immediate vicinity of the phase transitions, the crystal lattice under pressure undergo an unusual deformation.  相似文献   

4.
Spectroscopic ellipsometry measurements on TlGaSe2, TlGaS2 and TlInS2 layered crystals were carried out on the layer-plane (0 0 1) surfaces, which are perpendicular to the optic axis c?, in the 1.2–6.2 eV spectral range at room temperature. The real and imaginary parts of the pseudodielectric function as well as pseudorefractive index and pseudoextinction coefficient were found as a result of analysis of ellipsometric data. The structures of critical points in the above-band gap energy range have been characterized from the second derivative spectra of the pseudodielectric function. The analysis revealed four, five and three interband transition structures with critical point energies 2.75, 3.13, 3.72 and 4.45 eV (TlGaSe2), 3.03, 3.24, 3.53, 4.20 and 4.83 eV (TlGaS2), and 3.50, 3.85 and 4.50 eV (TlInS2). For TlGaSe2 crystals, the determined critical point energies were assigned tentatively to interband transitions using the available electronic energy band structure.  相似文献   

5.
Spectra of optical absorption in Bi0.5Sb1.5Te3 films grown on mica and KBr substrates have been investigated for T = 145 and 300 K. The data obtained have been analyzed together with the data of investigations on the fundamental absorption edge for Bi2Te3 available in the scientific literature. It has been revealed that the interband absorption spectra for both Bi0.5Sb1.5Te3 and Bi2Te3 represent a superposition of two components corresponding to direct and indirect allowed optical transitions. In this case, the least energy gap separating the valence band and the conduction band is direct for Bi2−xSbxTe3 (x ≤ 1.5, T = 300 K). For Bi0.5Sb1.5Te3 the temperature variation rates have been estimated for the thresholds of direct and indirect interband transitions. It has been shown that this solid solution is direct gap solution at T ≥ 145 K. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 50–52, July, 2008.  相似文献   

6.
This paper reports on a study of the dynamics of electronic excitations in KBe2BO3F2 (KBBF) crystals by low-temperature luminescent vacuum ultraviolet spectroscopy with nanosecond time resolution under photoexcitation by synchrotron radiation. The first data have been obtained on the kinetics of photoluminescence (PL) decay, time-resolved PL spectra, time-resolved PL excitation spectra, and reflection spectra at 7 K; the estimation has been performed for the band gap E g = 10.6−11.0 eV; the predominantly excitonic mechanism for PL excitation at 3.88 eV has been identified; and defect luminescence bands at 3.03 and 4.30 eV have been revealed. The channels of generation and decay of electronic excitations in KBBF crystals have been discussed.  相似文献   

7.
Single crystals of undoped and Co-doped ZnIn2Se4 were grown by the vertical Bridgman technique. The optical energy gaps of the single crystals were investigated in the temperature range of 10–300 K from the optical absorption measurements. The indirect optical energy gaps of the single crystals were found to be 1.624 eV for undoped ZnIn2Se4 and 1.277 eV for Co-doped one at 300 K. Also, the direct optical energy gaps were given by 1.774 and 1.413 eV for undoped ZnIn2Se4 and co-doped one, respectively. The temperature dependence of the optical energy gaps was well fitted by the Varshni equation.  相似文献   

8.
N M GASANLY 《Pramana》2016,86(6):1383-1390
Photoluminescence (PL) spectra of CuIn5S8 single crystals grown by Bridgman method have been studied in the wavelength region of 720–1020 nm and in the temperature range of 10–34 K. A broad PL band centred at 861 nm (1.44 eV) was observed at T = 10 K. Variations of emission band has been studied as a function of excitation laser intensity in the 0.5– 60.2 mW cm?2 range. Radiative transitions from shallow donor level located at 17 meV below the bottom of the conduction band to the acceptor level located at 193 meV above the top of the valence band were suggested to be responsible for the observed PL band. An energy level diagram showing transitions in the band gap of the crystal has been presented.  相似文献   

9.
It has been shown using atomic-force microscopy that the PbI2 impurity is embedded in the CdI2 crystal lattice in the form of nanocrystalline inclusions. The model of a high-energy cation exciton related to the 3 P 2 state of a free Pb2+ ion has been considered for the impurity absorption (excitation) band at 3.23 eV. The resonance narrow photoluminescence bands with the split absorption band at 3.12 and 3.20 eV have been compared with the emission of a free Frenkel exciton. It has been demonstrated that, in the temperature range 25–45 K, there arises a self-trapped exciton state, and the main role in its formation is played by the bending vibrations of the CdI2 crystal lattice. The potential barrier separating the self-trapped state from the free exciton is 23 meV. The photoluminescence band at 2.4 eV is assigned to the emission of the self-trapped high-energy cation exciton of PbI2 in the CdI2 crystal lattice.  相似文献   

10.
The effect of gamma radiation on the permittivity ? and the electrical conductivity σ of TlGaS2 crystals is investigated at frequencies of 0.1, 1, and 10 kHz and 1 MHz in the temperature range 200–370 K. It is shown that an increase in the temperature leads to an increase in the permittivity ? and the electrical conductivity σ. The electrical conductivity σ of TlGaS2 samples irradiated with a dose of 10 MR and then measured at all frequencies and the permittivity ? of samples irradiated with a dose of 1 MR and then measured at frequencies of 10 kHz and 1 MHz increase, whereas further accumulation of the dose results in a decrease in the values of ? and σ. The parameters studied are characterized by a considerable dispersion: as the frequency increases, the permittivity ? decreases and the electrical conductivity σ increases.  相似文献   

11.
The efficiency of formation and time evolution of radiation-induced structural defects and pulsed luminescence in KPb2Cl5 crystals under the action of a single electron pulse (E = 250 keV, τ = 20 ns) have been investigated. The spectra (1.1–3.8 eV) and relaxation kinetics (time interval 5 × 10?8?5 s) of transient optical absorption and the pulsed cathodoluminescence spectra and decay kinetics (1.4–3.1 eV) have been measured in the temperature range 80–300 K. It is revealed that the induced optical density and its time evolution depend strongly on temperature, and the absorption relaxation time contains several components and reaches several seconds at T = 300 K. The decay kinetics of transient absorption and pulsed cathodoluminescence kinetics have different orders and are controlled by different relaxation processes.  相似文献   

12.
A comparison of the experimental and calculated absorption spectra of CuGaSe2 crystals revealed the existence of two acceptor levels with ionization energies of 66 and 167 meV in the samples under study. It was found that the luminescence spectra of CuGaSe2 measured at 77 K exhibit four impurity-band transitions with impurity ionization energies of 66, 99, 136, and 190 meV. An analysis of the temperature dependence of the luminescence intensity in the temperature range 11–77 K revealed a band peaking at 1.671 eV due to the radiation of donor-acceptor pairs. The calculated sum of the ionization energies of the impurities responsible for the formation of donor-acceptor pairs and the temperature dependence of the relative intensities of impurity-band emission were used to determine the ionization energies of the corresponding donor and acceptor.  相似文献   

13.
We have studied the effect of lead dopant on the optical absorption, photoluminescence, and x-ray luminescence spectra, and the scintillation characteristics of CdI2 at room temperature. The crystals for the study were grown by the Stockbarger-Bridgman method. Activation of CdI2 from the melt by the compound PbI2 leads to the appearance in the absorption spectra in the near-edge region of an activator band at 395–405 nm, which is interpreted as an A band connected with electronic transitions from the 1S0 state to the 3P1 levels in the Pb2+ ion. For x-ray excitation, CdI2:Pb2+ crystals with optimal dopant concentration (∼1.0 mol%) are characterized by a light yield with maximum in the 570–580 nm region that is an order of magnitude higher than for CdI2 crystals in the 490–500 nm band. For α excitation, the radioluminescence kinetics for cadmium iodide is characterized by a very short (∼0.3 nsec) rise time and fast decay of luminescence, with τ1 ≈ 4 nsec and τ2 = 10–76 nsec. Depending on the conditions under which the crystals were obtained, the fast component fraction is 95%–99%. The crystal is characterized by a similar scintillation pulse in the case of excitation by x-ray pulses. The radioluminescence pulse shape for CdI2:Pb in the decay stage is predominantly exponential, with luminescence decay time constants τ1 ≈ 10 nsec and τ2 = 200–250 nsec. This system is characterized by low afterglow, at the level for the Bi4G3O12 scintillator. We have demonstrated the feasibility of using CdI2:Pb as a scintillator for detecting α particles. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 6, pp. 825–830, November–December, 2008.  相似文献   

14.
This paper reports on the results of the comprehensive study of the dynamics of electronic excitations in K2Al2B2O7 (KABO) crystals, obtained by low-temperature luminescence vacuum ultraviolet spectroscopy with nanosecond time resolution upon photoexcitation by synchrotron radiation. For the first time, the data have been obtained on the photoluminescence (PL) decay kinetics, PL spectra with time resolution, PL excitation spectra with time resolution, and reflection spectra at 7 K; the intrinsic nature of PL at 3.28 eV has been established; luminescence bands of defects have been separated in the visible and ultraviolet spectral regions; an intense long-wavelength PL band has been detected at 1.72 eV; channels of the formation and decay of electronic excitations in K2Al2B2O7 crystals have been discussed.  相似文献   

15.
The absorption spectrum of Cs2ZnI4 thin films in the energy range 3–6 eV at temperatures from 90 to 340 K has been investigated. It is established that this compound belongs to direct-gap insulators. Low-frequency exciton excitations are localized in ZnI4 structural elements of the lattice. Phase transitions at 280 K (paraelectric phase ? incommensurate phase), 135 K (incommensurate phase ? monoclinic ferroelastic phase), and 96 K (monoclinic phase ? triclinic ferroelastic phase) have been found from the temperature dependences of the spectral position and halfwidth of the low-frequency exciton band. Additional broadening of the exciton band is observed for ferroelastic phases; it is likely to be due to exciton scattering from strain fluctuations near domain walls.  相似文献   

16.
Optical absorption spectra in thin [N(CH3)4]2CuCl4 crystals in the thickness range 10 μm ≤ d < 100 μm have been studied. Strengthening of the crystal field has been found with a decrease in the [N(CH3)4]2CuCl4 crystal size. The reasons for absorption band shifts in the visible region depending on the [N(CH3)4]2CuCl4 crystal thickness and the manifestation of a size effect in crystals with an incommensurate superstructure are discussed.  相似文献   

17.
The temperature dependences of the conductivities parallel and perpendicular to the layers in layered TlGaSe2 single crystals are investigated in the temperature range from 10 K to 293 K. It is shown that hopping conduction with a variable hopping length among localized states near the Fermi level takes place in TlGaSe2 single crystals in the low-temperature range, both along and across the layers. Hopping conduction along the layers begins to prevail over conduction in an allowed band only at very low temperatures (10–30 K), whereas hopping conduction across the layers is observed at fairly high temperatures (T?210 K) and spans a broader temperature range. The density of states near the Fermi level is determined, N F=1.3×1019eV·cm3)?1, along with the energy scatter of these states J=0.011 eV and the hopping lengths at various temperatures. The hopping length R along the layers of TlGaSe2 single crystals increases from 130 Å to 170 Å as the temperature is lowered from 30 K to 10 K. The temperature dependence of the degree of anisotropy of the conductivity of TlGaSe2 single crystals is investigated.  相似文献   

18.
Low-temperature (T = 7 K) time-resolved selectively photoexcited luminescence spectra (2–6 eV) and luminescence excitation spectra (8–35 eV) of wide-bandgap chrysoberyl BeAl2O4, phenacite Be2SiO4, and beryl Be3Al2Si6O18 crystals have been studied using time-resolved VUV spectroscopy. Both the intrinsic luminescence of the crystals and the luminescence associated with structural defects were assigned. Energy transfer to impurity luminescence centers in alexandrite and emerald was investigated. Luminescence characteristics of stable crystal lattice defects were probed by 3.6-MeV accelerated helium ion beams.  相似文献   

19.
2 and Dy-doped p-TlGaSe2 (p-TlGaSe2:Dy)single crystals were grown by the Bridgman–Stockbarger method. Absorption spectra were measured on freshly cleaved (001) surfaces. The freshly cleaved crystals had a mirror-like surface and there was no need for mechanical treatment. The absorption measurements were carried out in p-TlGaSe2 and p-TlGaSe2:Dy samples in the temperature range 10–320 K with a step of 10 K. The phonon energies calculated in p-TlGaSe2 and p-TlGaSe2:Dy are 23.0 meV and 21.0 meV, respectively. The direct band gaps of p-TlGaSe2 and p-TlGaSe2:Dy are 2.279 eV and 2.294 eV at 10 K, respectively. There is an abrupt change for the energy peak for p-TlGaSe2 in the temperature ranges 105–120 K, 240–250 K, and for p-TlGaSe2:Dy in the temperature ranges 100–110 K, 240–260 K. Received: 3 December 1997 / Accepted: 5 October 1998  相似文献   

20.
The absorption edge of undoped Tl2Ga2S3Se crystals have been studied through transmission and reflection measurements in the wavelength range 440–1100 nm and in the temperature range 10–300 K. The absorption edge was observed to shift toward lower energy values with increasing temperature. As a result, the rate of the indirect band gap variation with temperature γ=−2.6×10−4 eV/K and the absolute zero value of the band gap energy Egi(0)=2.42 eV were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号