首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluid–structure interaction in a simplified 2D model of the upper airways is simulated to study flow-induced oscillation of the soft palate in the pharynx. The goal of our research has been a better understanding of the mechanisms of the Obstructive Sleep Apnea Syndrome and snoring by taking into account compressible viscous flow. The inspiratory airflow is described by the 2D compressible Navier–Stokes equations, and the soft palate is modeled as a flexible plate by the linearized Euler–Bernoulli thin beam theory. Fluid–structure interaction is handled by the arbitrary Lagrangian–Eulerian formulation. The fluid flow is computed by utilizing 4th order accurate summation by parts difference operators and the 4th order accurate classical Runge–Kutta method which lead to very accurate simulation results. The motion of the cantilevered plate is solved numerically by employing the Newmark time integration method. The numerical schemes for the structure are verified by comparing the computed frequencies of plate oscillation with the associated second mode eigenfrequency in vacuum. Vortex dynamics is assessed for the coupled fluid–structure system when both airways are open and when one airway is closed. The effect of mass ratio, rigidity and damping coefficient of the plate on the oscillatory behavior is investigated. An acoustic analysis is carried out to characterize the acoustic wave propagation induced by the plate oscillation. It is observed that the acoustic wave corresponding to the quarter wave mode along the length of the duct is the dominant frequency. However, the frequency of the plate oscillation is recognizable in the acoustic pressure when reducing the amplitude of the quarter wave mode.  相似文献   

2.
In this paper we study the transonic shock in steady compressible flow passing a duct. The flow is a given supersonic one at the entrance of the duct and becomes subsonic across a shock front, which passes through a given point on the wall of the duct. The flow is governed by the three-dimensional steady full Euler system, which is purely hyperbolic ahead of the shock and is of elliptic–hyperbolic composed type behind the shock. The upstream flow is a uniform supersonic one with the addition of a three-dimensional perturbation, while the pressure of the downstream flow at the exit of the duct is assigned apart from a constant difference. The problem of determining the transonic shock and the flow behind the shock is reduced to a free-boundary value problem. In order to solve the free-boundary problem of the elliptic–hyperbolic system one crucial point is to decompose the whole system to a canonical form, in which the elliptic part and the hyperbolic part are separated at the level of the principal part. Due to the complexity of the characteristic varieties for the three-dimensional Euler system the calculus of symbols is employed to complete the decomposition. The new ingredient of our analysis also contains the process of determining the shock front governed by a pair of partial differential equations, which are coupled with the three-dimensional Euler system. The paper is partially supported by National Natural Science Foundation of China 10531020, the National Basic Research Program of China 2006CB805902, and the Doctorial Foundation of National Educational Ministry 20050246001.  相似文献   

3.
Numerical solution of the complete system of Navier-Stokes equations is used to investigate laminar (Re ? 1000) subsonic flows of a compressible gas in the presence of heat transfer (cooled walls) in two-dimensional channels containing a bend section (for different curvature parameters). The appearance of closed separation regions of the flow on the channel walls, their deformation as the parameters of the problem are changed, and the loss of pressure are studied. The sections of the channel walls with maximal and minimal heat fluxes are determined, and the connection between these sections and the separation regions is elucidated.  相似文献   

4.
Cover Image     
A simple, robust, and accurate HLLC-type Riemann solver for the compressible Euler equations at various Mach numbers is built. To cure shock instability of the HLLC solver at strong shocks, a pressure-control technique, which plays a role in limiting the propagation of erroneous pressure perturbation, is proposed. With an all Mach correction method for the compressible Euler system, the proposed method is further extended to compute flow problems at low Mach numbers. The proposed all Mach HLLC-type scheme has been implemented and used to compute a variety of flow problems ranging from hypersonic compressible to low Mach incompressible flow regimes. Various numerical results demonstrate that the obtained all Mach HLLC-type scheme is both accurate and stable for all speed ranges.  相似文献   

5.
A numerical scheme is presented for the solution of the Euler equations of compressible flow of a gas in a single spatial co-ordinate. This includes flow in a duct of variable cross-section as well as flow with slab, cylindrical or spherical symmetry and can prove useful when testing codes for the two-dimensional equations governing compressible flow of a gas. The resulting scheme requires an average of the flow variables across the interface between cells and for computational efficiency this average is chosen to be the arithmetic mean, which is in contrast to the usual ‘square root’ averages found in this type of scheme. The scheme is applied with success to five problems with either slab or cylindrical symmetry and a comparison is made in the cylindrical case with results from a two-dimensional problem with no sources.  相似文献   

6.
Measurements of mean velocity and turbulent quantities have been carried out when the wake of a symmetrical airfoil interacts with the boundary layer on the (i) walls of a straight duct/diffuser and (ii) convex and concave walls of a curved duct/diffuser. The effects of adverse pressure gradient and of curvatures on the interaction are studied separately and in combination. Six cases are considered, viz. with (i) neither pressure gradient nor curvature, (ii) adverse pressure gradient and no curvature, (iii) and (iv) convex curvature with zero and adverse pressure gradients, respectively, (v) and (vi) concave curvature with zero and adverse pressure gradients, respectively. For the flows with curvature, the curvature parameter δ/R is 0.023, and for the flows with adverse pressure gradient, the Clauser pressure gradient parameter β is 0.62. The individual influences of adverse pressure gradient and convex and concave curvatures on the boundary layer are similar to those observed by earlier investigations. It is further observed that the combined effect of concave/convex curvature and the adverse pressure gradient causes higher turbulence intensities than the sum of the individual effects. The effect of curvature is to make the wake asymmetric, and in combination with adverse pressure gradient the asymmetry increases. It is observed that the adverse pressure gradient causes faster wake–boundary-layer interaction. Comparing measurements in a straight duct, a curved duct, a curved diffuser and a straight diffuser, it is seen that the convex curvature reduces the boundary layer thickness. The asymmetry in wake development compensates for this effect and the wake–boundary-layer interaction on a convex surface is almost the same as that on a straight surface. In the case of interaction with the boundary layer on a concave surface, the curvature increases the boundary layer thickness and causes enhanced turbulence intensities. However, the asymmetry in wake is such that the extent of wake is lower towards the boundary layer side. As a result, the wake–boundary-layer interaction on concave surface is almost the same as on a straight surface. The interaction is faster in the presence of adverse pressure gradient. Received: 16 June 2000 / Accepted: 17 May 2001  相似文献   

7.
It is demonstrated that the level of vibrations of turbines on the Sayano-Shushensk hydro power plant is enhanced by the capability of a compressible fluid to perform its own hydroacoustic oscillations (which can be unstable) in the turbine duct. Based on the previously obtained results of solving the problem of natural hydroacoustic oscillations in the turbine duct and some ideas about turbine interaction with an unsteady compressible fluid flow, results of full-scale studies of turbine vibrations and seismic monitoring of the dam of the Sayano-Shushensk hydro power plant before and during the accident are analyzed.  相似文献   

8.
Viscous heat-conducting compressible fluid flow in an annular duct formed by two coaxial cylinders with large injection at the walls is investigated. An asymptotic solution exhibiting the influence of the axial symmetry of the duct is obtained in the vicinity of the y axis and is compared with the results of exact numerical calculations. Asymptotic solutions of the Navier-Stokes equations have been obtained earlier for flows in a plane channel with various rates of wall injection in the case of an incompressible gas [1, 2] and a compressible gas [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 135–139, May–June, 1976.  相似文献   

9.
This paper is devoted to the generalization of a well-known result on reducible equations by Courant and Friedrichs [7] and a motivational result on compressible Euler system within the context of ideal gases by Li et al. [10]. The characteristic decomposition technique has been used to prove that any hyperbolic state, adjacent to a constant state, is simple for a pseudo-steady isentropic irrotational flow, modeled by Euler equations, in van der Waals fluids. Furthermore, this result is extended to full Euler system in self-similar coordinates provided the pseudo-flow characteristics are extending into a constant state.  相似文献   

10.
We discuss the problem of well-posedness of the compressible (barotropic) Euler system in the framework of weak solutions. The principle of maximal dissipation introduced by C.M. Dafermos is adapted and combined with the concept of admissible weak solutions. We use the method of convex integration in the spirit of the recent work of C.DeLellis and L.Székelyhidi to show various counterexamples to well-posedness. On the other hand, we conjecture that the principle of maximal dissipation should be retained as a possible criterion of uniqueness as it is violated by the oscillatory solutions obtained in the process of convex integration.  相似文献   

11.
This article considers the effects of the side walls on the unsteady flow of an incompressible viscous fluid in a duct of uniform cross-section. In order to show the effects of the side walls, three illustrative examples are given. They are: the starting flow in a duct of semicircular cross-section, the starting flow in a duct of rectangular cross-section and the starting flow in a duct of circular cross-section. The velocity distributions and the volume fluxes obtained for these flows are compared and it is shown that the flow in a duct of semicircular cross-section reaches steady state earlier than those for the flow in a duct of circular cross-section and for the flow in a duct of square cross-section. It is found that there are remarkable effects of the side walls of a duct on the required time to attain the asymptotic values of flow properties.  相似文献   

12.
In this study, a novel Mach‐uniform preconditioning method is developed for the solution of Euler equations at low subsonic and incompressible flow conditions. In contrast to the methods developed earlier in which the conservation of mass equation is preconditioned, in the present method, the conservation of energy equation is preconditioned, which enforces the divergence free constraint on the velocity field even at the limiting case of incompressible, zero Mach number flows. Despite most preconditioners, the proposed Mach‐uniform preconditioning method does not have a singularity point at zero Mach number. The preconditioned system of equations preserves the strong conservation form of Euler equations for compressible flows and recovers the artificial compressibility equations in the case of zero Mach number. A two‐dimensional Euler solver is developed for validation and performance evaluation of the present formulation for a wide range of Mach number flows. The validation cases studied show the convergence acceleration, stability, and accuracy of the present Mach‐uniform preconditioner in comparison to the non‐preconditioned compressible flow solutions. The convergence acceleration obtained with the present formulation is similar to those of the well‐known preconditioned system of equations for low subsonic flows and to those of the artificial compressibility method for incompressible flows. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The interaction between a curved shock wave and a compressible vortex is numerically investigated. The investigation concentrates on the local deformation of the shock structure due to the shock–vortex interaction. The essentially non‐oscillatory (ENO) scheme is used to solve the unsteady two‐dimensional Euler equations. A curved shock wave is obtained by the diffraction of an initially planar shock wave around a right‐angled corner and then allowed to interact with a strong compressible vortex superimposed on the flow. The same vortex affects the shock wave differently depending on the placement of the vortex because of the varying strength of the shock wave. This effect could range from a non‐symmetric deformation of the shock wave to a local disruption in the shock structure depending on the strength of the shock wave in the interaction region. This process leading to a local disruption in the shock structure is analyzed in detail. It is shown that such a disruption in the shock structure can be predicted by simple one‐dimensional considerations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Experiments have been performed to investigate the freezing heat transfer characteristics in a return bend with a rectangular cross section. The experiments were carried out for two kinds of duct heights of 30 and 50 mm under the fixed size of 300 mm in duct width and 159 mm in curvature radius of convex wall. Both the convex and concave walls of a return bend were kept less than the freezing temperature of water. It was found that the freezing characteristics on the convex wall are markedly different from those on the concave wall of a return bend, and that the cooling temperature ratio is one of the most important parameters on the forced-convection freezing heat transfer in a return bend.  相似文献   

15.
This paper concerns the well-posedness theory of the motion of a physical vacuum for the compressible Euler equations with or without self-gravitation. First, a general uniqueness theorem of classical solutions is proved for the three dimensional general motion. Second, for the spherically symmetric motions, without imposing the compatibility condition of the first derivative being zero at the center of symmetry, a new local-in-time existence theory is established in a functional space involving less derivatives than those constructed for three-dimensional motions in (Coutand et al., Commun Math Phys 296:559–587, 2010; Coutand and Shkoller, Arch Ration Mech Anal 206:515–616, 2012; Jang and Masmoudi, Well-posedness of compressible Euler equations in a physical vacuum, 2008) by constructing suitable weights and cutoff functions featuring the behavior of solutions near both the center of the symmetry and the moving vacuum boundary.  相似文献   

16.
We prove well-posedness for the three-dimensional compressible Euler equations with moving physical vacuum boundary, with an equation of state given by p(ρ) =  C γ ρ γ for γ > 1. The physical vacuum singularity requires the sound speed c to go to zero as the square-root of the distance to the moving boundary, and thus creates a degenerate and characteristic hyperbolic free-boundary system wherein the density vanishes on the free-boundary, the uniform Kreiss–Lopatinskii condition is violated, and manifest derivative loss ensues. Nevertheless, we are able to establish the existence of unique solutions to this system on a short time-interval, which are smooth (in Sobolev spaces) all the way to the moving boundary, and our estimates have no derivative loss with respect to initial data. Our proof is founded on an approximation of the Euler equations by a degenerate parabolic regularization obtained from a specific choice of a degenerate artificial viscosity term, chosen to preserve as much of the geometric structure of the Euler equations as possible. We first construct solutions to this degenerate parabolic regularization using a higher-order version of Hardy’s inequality; we then establish estimates for solutions to this degenerate parabolic system which are independent of the artificial viscosity parameter. Solutions to the compressible Euler equations are found in the limit as the artificial viscosity tends to zero. Our regular solutions can be viewed as degenerate viscosity solutions. Our methodology can be applied to many other systems of degenerate and characteristic hyperbolic systems of conservation laws.  相似文献   

17.
The existence and uniqueness of two dimensional steady compressible Euler flows past a wall or a symmetric body are established. More precisely, given positive convex horizontal velocity in the upstream, there exists a critical value \({\rho_{\rm cr}}\) such that if the incoming density in the upstream is larger than \({\rho_{\rm cr}}\), then there exists a subsonic flow past a wall. Furthermore, \({\rho_{\rm cr}}\) is critical in the sense that there is no such subsonic flow if the density of the incoming flow is less than \({\rho_{\rm cr}}\). The subsonic flows possess large vorticity and positive horizontal velocity above the wall except at the corner points on the boundary. Moreover, the existence and uniqueness of a two dimensional subsonic Euler flow past a symmetric body are also obtained when the incoming velocity field is a general small perturbation of a constant velocity field and the density of the incoming flow is larger than a critical value. The asymptotic behavior of the flows is obtained with the aid of some integral estimates for the difference between the velocity field and its far field states.  相似文献   

18.
We consider the Euler equations of barotropic inviscid compressible fluids in the half-plane. It is well known that, as the Mach number goes to zero, the compressible flows approximate the solution of the equations of motion of inviscid, incompressible fluids. In 2D (two dimensions) such limit solution exists on any arbitrary time interval, with no restriction on the size of the initial data. It is then natural to expect the same for the compressible solution, if the Mach number is sufficiently small. We decompose the solution as the sum of the irrotational part, the incompressible part and the remainder, which describes the interaction between the first two components. First we study the life span of smooth irrotational solutions, i.e., the largest time interval T(?) of existence of classical solutions, when the initial data are a small perturbation of size ? from a constant state. Related to this is a decay property for the irrotational part. Then, we study the interaction between the two components and show the existence on any arbitrary time interval, for any Mach number sufficiently small. This yields the existence of smooth compressible flow on any arbitrary time interval. For the proofs we use a combination of energy and decay estimates.  相似文献   

19.
SUMMARY

The local grid refinement technique is incorporated into a finite volume program that solves the three-dimensional compressible Euler equations. The underlying idea is to improve the solution accuracy in domains of dominating physical flow features, thus avoiding a global fine mesh to resolve most of the smooth flow. An unstructured data system is introduced to manage point enrichment on multiple refinement levels for structured meshes of hexahedral cells. Grid adaption is utilized to cluster points automatically in domains of interest. The multi-block formulation permits the application of the refinement method to various external flow configurations.  相似文献   

20.
《Fluid Dynamics Research》1997,21(3):211-219
The purpose of this study is to investigate the feasibility of applying a kinetic molecular model to the problem of turbulence-oriented computation of compressible flow. Consider a simple two-dimensional initial value problem of the Taylor-Green-type periodic flow in a square region. The Boltzmann equation with its collision term of the BGK model is used in its integral form along the characteristics. An approximation based on small time steps is utilized for actual computation. It takes several times more steps than the corresponding Euler computation. The results show in general that basically the same pattern for flow fields in the early stages is obtained independently by the Euler and the BGK models, with less violent motion with the BGK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号